

Subject code :(17648)

Page 1 of 27

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17648)

Page 2 of 27

Q No.	Answer	marks	Total marks
1a-i	Fick's law is the basic law of diffusion		4
	Fick's law states that the flux of a diffusing component A in z direction in a		
	binary mixture of A and B is proportional to the molar concentration gradient.		
	$J_{A} = -D_{AB}dC_{A}/dZ$	2	
	Where J_{A} - molar flux of A in z direction		
	C _A – concentration of A	2	
	dC_A/dZ – concentration gradient in z direction		
	$D_{AB -}$ proportionality constant, diffusion coefficient		
	Z – distance in the direction of diffusion		
1a-ii	An azeotrope is a mixture of two or more liquids whose proportions cannot be		4
	altered by simple distillation. This happens because, when an azeotrope is	2	
	boiled, the vapor has the same proportions of constituents as the unboiled		
	mixture.		
	Ther methods of separation involve introducing an additional agent, called		
	an <i>entrainer</i> , that will affect the <u>volatility</u> of one of the azeotrope constituents	2	
	more than another. When an entrainer is added to a binary azeotrope to form a		
	ternary azeotrope, and the resulting mixture distilled, the method is called		
	azeotropic distillation.		
1a-iii	Selection criteria for solvent selection in liquid-liquid extraction:		4
	1. Selectivity: The ratio of concentration ratio of solute to feed solvent in	1 mark	
	extract phase to that in raffinate phase is called selectivity factor. It is	each for	
	the measure of effectiveness of solvent for separating the constituents.	any 4	

ect cod	e :(17648)		Page 3 of 27
	2. Recoverability: As solvent should be recovered for reuse frequently by		
	distillation, it should not form an azeotrope with extracted solute and for		
	low cost recovery, relative volatility should be high.		
	3. Distribution coefficient: Higher values are desirable as less solvent		
	will then be required for given extraction duty.		
	4. Density: The difference in densities of saturated liquid phases should be		
	larger for physical separation.		
	5. Insolubility of solvent: The solvent insoluble in original liquid solvent		
	should be preferred and it should have high solubility for solute to be		
	extracted, then small amounts of solvent are required.		
	6. Chemical Stability: The solvent should be stable chemically and inert		
	towards other components and should not be corrosive.		
	7. Cost: The solvent should be cheap.		
	8. The solvent should be non toxic, non flammable.		
	9. Solvent should have low viscosity, freezing point, vapor pressure for		
	ease in handling and storage.		
	10. Interfacial tension: It should be high for coalescence of emulsions to		
	occur more readily, as the same is of greater importance than dispersion.		
1a-iv	Classification of dryers:	4	4
	1. Mode of operation: Batch dryer and continuous dryer		
	2. Physical properties and handling characteristics of the material:		
	3. Mode of heat transfer: Direct dryer and indirect dryer		
1b-i	The 'q' is a measure of the thermal condition of the feed and is defined as the		
	number of moles of saturated liquid resulting in the stripping section for each		
	mole of feed introduced. Thus for a feed we get,		

Subject code :(17648)	Page 4 of 27
L' = L + qf	
$\mathbf{V} = \mathbf{V}' + (1 - q)\mathbf{F}$	
Derivation of q-line :	
The liquid flow in the stripping section is	
L' = L + qf	
$\therefore L' - L = qf \qquad $	
Similarly, the vapour flow in the rectifying section is	
V = V' + (1 - q) F(2)	
:. $V - V' = (1 - q) F$ (3)	
Overall material balance in the upper section of coloumn :	
V = L + D (4)	2
Material balance of A in the upper section :	
$V_y = Lx + D x_D$ (5)	
Overall material balance in the lower section :	
V' = L' - W(6)	
Material balance of A in the lower section :	
$V'y = L'x - W x_w$ (7)	
Subtracting Equation (7) from Equation (5)	
$y(V - V') = x(L - L') + D x_D + W x_w$ (8)	
Overall material balance of A over the coloum as a whole :	2
$x_{f} F = D x_{D} + W x_{w}$ (9)	
: Equation (8) becomes	

Page 5 of 27

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17648)

	$y(V - V') = x(L - L') + x_F.F$ (10)	1	
	Substituting the values of V - V' and L' – L from Equation (3) and (1) into		
	Equation (10) gives		
	y (1 - q) $F = x(-qF) + x_{F}$. F		
	$\therefore y = \frac{-q}{1-q} x + \frac{XF}{(1-q)} $ (11)	1	
	Equation (11) is known as the feed line or q-line equation		
1b-ii	Different methods of obtaining super saturation		6
	i) By cooling a concentrated, hot solution trough indirect heat exchange.	4	
	ii) By evaporating a part of solvent/ by evaporating a solution.		
	iii) By adiabatic evaporation and cooling.		
	iv) By adding a new substance which reduces the solubility of the original		
	solute, i.e. by salting.		
	When solubility of the solute increases with increase in temperature, super	2	
	saturation is achieved by cooling. When solubility is independent of		
	temperature, super saturation is generated by evaporating a part of solvent.		
	When solubility is very high, super saturation may be generated by adding new		
	substance. Original solvent to form mixed solvent in which the solubility of the		
	solute is reduced. The added component may get mixed physically with		
2-a	Solubility Curves:	4	4
	Graphical relationship between the solubility and temp. is solubility		
	curve. The solubility of solute in a given solvent may increase, decrease		
	or more or less remains constant with temp.		
	The solubility curves of KClO3, NaCl are continuous whereas that of		
	FeSO4, Na2SO4 are discontinuous.		

	For some substance, their solubility decreases with increase in temp, for some solubility increases with temp, for some solubility remains same with temp.		
2-b	Factors on which the rate of drying depends:	1	
	1) Gas Velocity : When the velocity of the gas or air is high the rate of		
	drying will also be high.	1	
	2) Humidity of gas : Lesser the relative humidity, the more will be the rate of drying.		
	3) Area of drying surface : If the area of the wet surface exposed to the gas or air is more, the rate of drying will also be more.	1	
	4) Temperature : If the temperature of the gas is increased' it's relative	1	
	humidity decreases (i.e gas becomes more unsaturated) and thus		
	increase a driving force (i.e the concentration difference of moisture		
	between the solid and gas) and so the rate of drying increases.		
2-c	Consider one mole of liquid mixture having x_f mole fraction , f moles of feed		
	that is vapourized and of composition y. Then (1-f) will be the moles of	2	
	residual liquid obtained. Let x be the mole fraction of more volatile component		
	in liquid. Material balance for more volatile component is		
	$x_F = fy + (1 - f)x$	2	
	OR y= $-(1-f)x/f+(x_f/f)$		
	The above equation is operating line for flash distillation with slope = $-(1-f)/f$		
	and y- intercept = x_F/f		
	The point of intersection of operating line and diagonal (x=y) is (x_F , x_F)		
2-d	Rayleigh equation:	1	4
	Let F be moles of liquid mixture containing x_F mol fraction of A, D kmoles of		

Subject code	2:(17648)		Page 7 of 27
	distillate and W kmoles of residual liquid in still which are obtained at the end		
	of operation. Let y_D and x_W be the mol fr of A in distillate and bottom residual		
	liquid.		
	Let L be kmoles of liquid in the still at any time during the course of distillation		
	and let x be mol fr of A in liquid.Let very small amount dD kmol of distillate of		
	composition y in equilibrium with the liquid is vaporized. Then composition		
	and quantity of liquid decreases to (x-dx) and L to (L-dL) respectively.		
	Overall material balance is L=L-dL+dD		
	Or $dL = dD$		
	Material balance for component A is Lx=(L-dL)(x-dx)+ydD	1	
	Lx = Lx - Ldx - xdL + dLdx + ydD		
	dLdx=0		
	0 = -Ldx - xdL + ydL		
	But dD=dL		
	i.e. 0=-Ldx-xdL+ydL		
	Ldx=(y-x)dL		
	dL/L=dx/(y-x)		
	Integrating the equation between the limits L=F, $x=x_F$, L=W $x=x_W$	1	
	F xF		
	$\Box dL/L = \Box dx/(y-x)$		
	W xW		
	XF		
	$Ln(F/W) = \Box dx/(y-x)$	1	
	Xw		
	This equation is known as Rayleigh equation.		
2-е	Differentiate between distillation and extraction		4
L		I	I

Subject code :(17648)

Page 8 of 27

	Distillation	Extraction	1 mark	
	Constituents of liquid mixture are	Constituents of liquid mixture are	each for	
	separated by using thermal energy	separated by using insoluble liquid	any four	
		solvent		
	It utilizes the difference in vapour	It utilizes the difference in		
	pressure of the components to effect	solubilities of the components to		
	separation	effect separation		
	Relative volatility is used as a	Selectivity is used as a measure of		
	measure of degree of separation	degree of separation		
	A new phase is created by addition of	A new insoluble liquid phase is		
	heat	created by addition of solvent to feed		
	Gives almost pure product	Doesn't give pure product		
	Requires thermal energy	Requires mechanical energy for		
		mixing and separation		
	Needs heating and cooling provisions	Doesn't need heating and cooling		
		provisions		
	Primary choice for separation	secondary choice for separation		
2	Managara la tilaga anna anna tiaga handana (0
3-a	More volatile component is n-naptane (.	A).		8
	$\mathbf{x} = \mathbf{x}_{A} = \mathbf{M}$ of the fraction of a- naptane	is iiquid		
	$y = y_A =$ Mole fraction of n- haptane i	n vapour.		
	We can compute vapour –liquid comp	osition using following relationship		
	P - P _B		1	
	x =	—		
	$P_A - P_B$			
			1	
	$y = P_A.x$			

Page 9 of 27

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17648)

		۷.			
p					
D 101 0	DAGI D 101 205	(1 D 41 200			
P = 101.3	325 кра , Р _А = 101.325	$P_{B} = 41.390$			
T = 371.4	k			1	
	101.325 – 44.39	6			
x =		— = 1			
	101.325 - 44.396				
	101.325×1				
y =	=	= 1		1	
	101.325				
At 3	378 k,				
P =	101.325kpa, $P_{A} = 12$	5.323kpa & $P_B^{\circ} = 55$.595 kpa		
	101.325 - 55.59	5			
x =		— = 0.656			
	125.323-55.595			1	
	125.323 × 0.656				
V	=	= 0.810		1	
	101.325				
				2	
Tompk	v	¥7	l		
	1.0	y 1.0			
3/1.4	1.0	1.0			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17648)

Page **10** of **27**

	378	0.656	0.810		
	298.6	0.0	0.1		
		OR		1	
	Total pressur	re = partial pressure o	f heptane + partial p	pressure of octane	
	Partial pressu	$re = Mole fraction \times T$	Vapour pressure		
	Let, 'x' is mo	ble fraction of heptane	•		
	101.325 = 10)1.325 x + 44.396 (1-x	x)		
	= 10	01.325x + 44.396-44.3	96x		
	101.325 - 44	4.396 = (101.396 – 44	4.396)x		
		$\mathbf{X} = 1$			
		P _A X 101	1.325×1		
	& y	=			
		P 101	.325		
		= 1			
	Similarly a	ll other values of x &	y can be calculated.		
3-b	Basis	: 60 mole % of benzer	ne		
	$x_f =$	0.6			
	$x_D =$	0.95			
	$\mathbf{X}_{\mathbf{W}} = 0$).1			
					2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17648)

Page 11 of 27

Subject code :(17648)	Page 12 of 27	
(X_F, Y_F) on diagonal.	1	
Draw feed line (q line) through point (0.6,0.6) to meet operating line rectifying		
section at some point.		
Locate (X_W, Y_W) i. e. (0.1,0.1) on diagonal $\&$ join this point to intersection of	1	
operating line of rectifying section & feed line (q-line)		
This is operating line of stripping section		
Construct stages step by step & count them as shown in diagram.	1	
Number of ideal slages $= 10$		
Actual no. of stages required = $10 - 1$		
= 9		
Position of feed plate = 5^{th} from top.		
3-c Lewis sorel method of determination of number of theoretical plates/ slags	8	
Eqution of operating line of rectifying	2	
L _n D.X _D		
$y_n+1 = x_n + eq.1$		
$L_n + D$ $L_n + D$		
Operating line of stripping section		
L_m $W.X_W$		
$y_m + 1 = - x_m - eq.2$	2	
L_m - W L_m - W		
1. From the data cited in a given problem, evaluate the terms – D,W,L,etc.		
2. From the x-y data provided (or can be generated knowing the relative		
volatility) draw an equilibrium diagram.		
3. Substistute the values of $L_n(L)$, x_D , D in equation(1), in order to get a	4	
relationship between y_n+1 and x_n .		
4. Similarly , substitute the values L_m, W, x_W in equation(2) , to get a		

ject code	:(17648)		Page 13 of 27
	 relationship between y_m+1 and x_m. Lm is to be evaluated by taking into consideration the condition of feed. For example, if it is a liquid at its bubble point L_m= L_n+F. 5. The distillate composition (x_D) given in the problem statement represents the composition of vapour (y_n) as it is obtained by condensing the vapour l;eaving the column. 6. From the vapour phase composition : y_n = x_D, find the liquid phase composition x_n+1 from the x-y curve drawn and substitute the value of x_n+1 in the equation of the operating line of the rectifying section to get y₂ 7. Find x_n+2 value from the equilibrium diagram corresponding to y_n+2 8. Find y_n+3 and proceed with the same equation till we reach the point when the liquid phase composition equal to or less than x_F 9. Then make use of the material balance equation or operating line of stripping section and proceed in the same way as described above till we get the liquid phase composition equal to or below x_w, suppose we end with y_n+10, it means that there will be 10 plates in the column. 		
4a-i	I. Applications of extraction:	1 mark	
	1. Recovery of acetic acid from dilute aquesous solution.	each	
	 Recovery of long chain fatty acid from vegetable oil by liquid propane. 		
	3. Separation of petroleum products having approximately same boiling point		
	4. Recovery of penicillin from the fermentation both using butyl		

ect code	:(17648)	Page 14 of
	acetate.	
4a-ii		
	As the temperature & total pressure P is constant throughout, the net moles of A	
	diffusing to the right must be equal to net moles of B diffusing to the left .if this	
	is not so, the total pressure would not remain constant throughout the system	
	.This implies that ,	
	$\mathbf{J}_{\mathrm{A}} = - \mathbf{J}_{\mathrm{B}} \qquad $	1
	JA is the molar flux of component A in the X direction due to the molar	
	diffusion in kmol/(m2.s)	
	Fick's law for component B for constant molar concentration, C, becomes	
	d _{CB} eq.2	
	$J_B = -D_{BA} \overline{d_X}$	
	Here flux is in the X-direction	1
	According to the Dalton's law, the total pressure is the sum of the partial	
	pressures of A & B	
	$\mathbf{P} = \mathbf{p}_{\mathrm{A}} + \mathbf{p}_{\mathrm{B}} \qquad $	
	And we know that : $P_A \propto C_A$ eq.4	
	The total molar concentration for the gaseous mixture is given by	
	$\mathbf{C} = \mathbf{C}_{\mathbf{A}} + \mathbf{C} \qquad \qquad$	
	Differentiating both the sides of eq.5 with respect to X gives	
	d_{CA} d_{CB} eq.6	
	0 = +	
	dX dX	1
	or	
	d _{CA} d _{CB} eq.7	
	+	
	dX dX	

Subject cod	e :(17648)	I	Page 15 of 27
	if gradient exists in a gas A, a gradient also exists in a gas B.the gradient of B is		
	equal but opposite in sign to that of A		
	Fick's law for component A for constant total concentration is		
	d _{CA}		
	$J_A = -D_{AB}$		
	d _X		
	Combining equations 1, 2& 3 we get,		
	d _{CA} eq.9		
	$J_A = - D_{AB}$		
	d _X		
	$=J_{B} = -\left[-D_{BA} \frac{d_{CA}}{dX}\right] \qquad \qquad$		
	d_{CA} d_{CB}		
	$-D_{AB} = D_{BA}$ eq.11	1	
	dX dX		
	but		
	$a_{CA} = - a_{CB}$ $ eq.12$		
	d_X d_T		
	$D_{AB} = D_{BA}$		
4a-iii	Milk powder – Spray dryer	1⁄2	4
	Reason: Milk can be sprayed in form of fine spray in hot & dry air in counter	1⁄2	

oject code :(17648)	l	Page 16 of 27
current direction in spray chamber to get dried milk powder.		
Free flowing material – Rotary dryer	1/2	
Reason : Free flowing material is allowed to flow down in a slightly incline	d ½	
cylinder which is rotating material fed is advanced through dryer by gravity i	n	
opposite direction to hot air/ flue gases admitted at bottom to flow towards to	р	
of cylinder. Sprial flights help to keep material in suspension in flow of hot &	&	
dry air.		
Wet lumpy solids – Tunnel dryer	1/2	
Reason : Wet lumps can be placed on trays which can be loaded on truck	.s ¹ / ₂	
which can be put in tunnel in which hot air is flowing in counter current	nt	
direction.		
Pharmaceutical products – Tray dryer	1/2	
Reason : relativly cheap,	1/2	
low maintainance cost,		
no loss of product during drying,		
Easy in cleaning.		
4a-iv		4
Let XA & yA be mole fraction of methyl alcohol in liquid & vapour phase	2	
$\mathbf{P}_{\mathbf{A}} = \mathbf{P} \mathbf{X}_{\mathbf{A}}$		
Partial pressure = vapour pressure × mole fraction		
Of A		
$P_B = P_B imes X_B$		
$= 12.33 (1 - X_A)$		
$\mathbf{P} = \mathbf{P}_{\mathbf{A}} + \mathbf{P}_{\mathbf{B}}$		
40 = 53.32 XA + 12.33 (1 - XA)		
$X_A = 0.675$		
$yA = P_A$		

Subject code :(17648) Page 17 of 27 Р = 53.32 × 0.675 40 = 0.90Equilibrium composition 2 Liquid Phase = 0.675 mole fraction methane Vapour Phase =0.90mole fraction methane 4b-i 6 Crystallising chamber . 2 Feed Coolant out Cooler E Coolant in-Pump Fig. 6.6 : Oslo / Krystal Cooling Crystalliser * **Construction :** 2 It consist of a crystallizing chamber, a circulating pump and a external cooler for cooling the solution. It is a circulating liquid cooling crystalliser. Working : The solution to be crystallized is fed from the top. Mother liquor from a 2 crystallizing chamber is withdrawn near a feed point 'A' with the help of a

Subje	ect code :(17648)	Page 18 of 27
	circulating pump and it is then admitted to a cooler (E) whrein supersaturation	
	is achieved by cooling. The supersaturated solution from the cooler is finally	
	fed back to the bottom of the crystallizing chamber through a central pipe (P).	
	Usually, nucleation takes place in the bed of crystals in the crystallising	
	chamber. The nuclei formed circulate with mother liquor and once they go	
	sufficiently large, they will be retained in the fluidised bed. Once the crystals	
	grow to a required size, they are removed as product from the bottom of the	
	crystallising chamber through a valve 'V' as these cannot be retained in the	
	fludised bed by the circulation velocity.	

Subject code :(17648)

Page 19 of 27

ect coc	de :(17648)		Page 20 of 27
	patches start forming on the surface of solid. The moisture content at which the constant rate period ends and the drying rate starts to fall is known as the critical moisture content. After point 'D', the surface of the solid is completely dry and internal moment of moisture starts coming to the surface and this is continued upto the point 'E' where the equilibrium is attend.		
5-a	 Bubble cap plate is one of the devices in large diameter fractional distillation columns that are designed to produce a bubbling action to exchange the vapour bubbles flowing up the column. A metal cap covering a hole in <u>the</u> plate within a distillation tower; designed to permit vapors to rise from below the plate, pass through the cap, and make conta ct with liquid on the plate. The gas flow up through the riser, reverse flow under the cap, passes downward through the annulus between the riser and the cap. Because of cost and complexity most modern design favours sieve or valve tray over the bubble cap tray. It is specially use when 	2	4
	i) Very low vapour rate to be handledii) Adequate residence time is required for separation	2	

Subject code :(17648)

Page 21 of 27

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17648)

2

The plates are numbered serially from top to bottom. On every plate two different fluid streams not at equilibrium are brought into intimate contact, mass transfer takes place, phases are separated, and finally two fluid streams leave the plate in equilibrium with each other.

When vapour from plate n+1 is brought into intimate contact on plate n with liquid from plate n-1, their composition change to attain equilibrium values. During the interchange process, some of more volatile component is vaporized from liquid L_{n-1} , decreasing the liquid concentration from x $_{n-1}$ to x_n and some of the less volatile component is condensed from the vapour V_{n+1}, increasing the vapour concentration from y_{n+1} to y_n. In the column, the heat to vaporize more volatile component from liquid is supplied by the heat released in the condensation of less volatile component from vapour. The more volatile

2

ect cod	de :(17648)		Page 23 of 27
	component is transferred to the vapour rising up from the liquid running down the column , while the less volatile component is transferred to the liquid		
	running down from the vapour rising up the column. The temperature decreases along the column height.		
5-c	In <u>chemical processing</u> , a packed bed is a hollow <u>tube</u> , pipe, or other vessel that is filled with a packing material. The packing can be randomly filled with small objects like <u>Raschig rings</u> or else it can be a specifically designed structured packing. Packed beds may also contain catalyst particles or	4	
	adsorbents such as zeolite pellets, granular activated carbon, etc.		
	The purpose of a packed bed is typically to improve contact between two <u>phases</u> in a chemical or similar process. Packed beds can be used in a <u>chemical reactor</u> , a <u>distillation</u> process, or a <u>scrubber</u> , but packed beds have also been used to store <u>heat</u> in chemical plants. In this case, hot gases are allowed to escape through a vessel that is packed with a <u>refractory</u> material until the packing is hot. Air or other cool gas is then fed back to the plant through the hot bed, thereby pre-heating the air or gas feed. In industry, a packed column is a type of packed bed used to perform <u>separation processes</u> , such as <u>absorption</u> , <u>stripping</u> , and <u>distillation</u> . A packed column is a <u>pressure vessel</u> that has a packed section.		
5-d	Feed line	4	
	q = 0 (saturated vapour) $q = 1 (saturated liquid)$ $0 < q < 1 (mix of liquid and vapour)$ $q > 1 (subcooled liquid)$		
	q < 0 (superheated vapour)		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page 24 of 27

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17648)

5-е	Advantage and disadvantage of a packed column	1 mark	4
		each for	
	Advantages:	any 2	
	• Most cost-efficient distillation column when the diameter of the column		
	is less than 0.6 m.		
	• Because packing can be made from inert materials, packed beds are able		
	to handle corrosive materials.		
	• Lower pressure drop than in plate columns preventing column flooding.		
	Disadvantages:	1 mark	
	• Packing can break during installation, or due to thermal expansion.	each for	
	• Not cost efficient for high liquid flow rates.	any 2	
	• Contact efficiencies are decreased when the liquid flow rate is too low.		
6-a	X1 = Initial moisture content, x= wt. Fraction of moisture in solid.		8
	=0.67/(1-0.67)=2.03	1	
	X2= final moisture content= $0.25/(1-0.25)=0.333$	1	
	X^* = Equilibrium moisture content = 0.01/(1-0.01)=0.0101	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page 25 of 27

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17648)

	Xc =0.40/(1-0.40)= 0.67	1	
	$Rc = 1.5 kg/m^2.h$	1	
	A/W' = 0.5		
	W'/A=2.0	1	
	$T = W'/(A.Rc)[(X1-Xc) + (Xc-X^*) ln ((Xc-X^*)/(X2-X^*))]$	1	
	$= 2/1.5[(2.03-0.67) + (0.67-0.0101) \ln ((0.67-0.0101)/(0.333-0.0101))]$		
	T= 2.44 h.	1	
6-b	Rotary drum Dryer:		8
	Construction : It consists of a drum rotating in a tub of liquid to be filtered. The	3	
	technique is well suited to slurries and liquids with a high solid content, which		
	could clog other forms of filter. The drum is pre-coated with a filter aid		
	typically of diatomaceous earth (DE) or Perlite. After pre-coat has been applied		
	the liquid to be filtered is sent to the tub below the drum. The drum rotates		
	through the liquid and the vacuum sucks liquid and solids onto the drum pre-		
	coat surface the liquid portion is "sucked" by the vacuum through the filter		
	media to the internal portion of the drum and the filtrate numbed away. The		
	solids adhere to the outside of the drum, which then passes a knife, cutting off		
	the solids and a small portion of the filter media to reveal a fresh media surface		
	that will enter the liquid as the drum rotates. The knife advances automatically		
	as the surface is removed		
	A rotary vacuum filter consists of a large rotating drum covered by a cloth. The		
	drum is suspended on an axial over a trough containing liquid/solids slurry with		
	approximately 50-80% of the screen area immersed in the slurry.		
	Working: As the drum rotates into and out of the trough, the slurry is sucked		
		2	

bject coo	de :(17648)		Page 26 of 27
	on the surface of the cloth and rotated out of the liquid/solids suspension as a cake. When the cake is rotating out, it is dewatered in the dying zone. The cake is dry because the vacuum drum is continuously sucking the cake and taking the water out of it. At the final step of the separation, the cake is discharged as solids products and the drum rotates continuously to another separation cycle.	3	
6-c	Mier's supersaturation theory:	5	8
	According to Mier's theory there is a definite relationship between the conc and		
	temp at which crystals will spontaneously formed in a pure solution. This		
	relationship is represented by the super solubility curve which is approximately		
	parallel tp the solubility curve. The curve AB is the solubility curve and curve		
	PQ is the super solubility curve. The curve AB represents maximum conc of		
	solution which can be achieved by bringing solid-solute into eqm with liquid		

Subject c	code :(17648)	Р	age 27 of 27
	solvent. If a solution having the composition and temp indicated by point C is		
	cooled in the direction shown by the arrow it first crosses the solubility curve		
	AB and it is expected to start of crystallization. Actually if the process started		
	with initially unseeded solution crystal formation will not begin until the		
	solution is super cooled considerably passed the curve AB. According to Mier's		
	theory, crystallization will start in the neighbourhood of the point D and the		
	concentration of the solution then follows roughly along the curve DE.For an		
	initially unseeded solution, the curve PQ represents the limit at which		
	spontaneous nuclei formation begin and consequently, crystallization can start.		
	Contra Super solubly 1 D 	3	