

WINTER – 15 EXAMINATIONS

Subject Code: **17553**<u>Model Answer</u>Page No: ____/ N Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Q.	MODEL ANSWER	MARKS	TOTAL
NO.	Attempt any EIVE of the following:		
(a)	Maximum Normal Stress theory.		374-20
()			
	ϕ_{α}		
	on the second of the beginning of the rest, instance a classic istimuted to Ori-		
	Creep your in third, states a serve look that guilding on the contract of the	01 mark	
		for	
	σ_{ij} of A mode $\dagger \sigma_{ij}$ some frequencies of the second state of the second state σ_{ij} and σ_{ij}	ingure	
	(a) (b) (c)		
	•When the component is subjected to several types of loads		
	conditions. For example, a transmission shaft is subjected to bending		
	moment as well as twisting moment (torque) at the same time.		
	• The plane, on which, only normal stresses acts and no shear stress, is		
	called as principal plane. The magnitude of normal stress acting on the		
	 principal plane is called principal stress. Consider an element of a plate subjected to two dimensional stresses as 		
	shown in Fig.		
	• In this analysis, the stresses are classified into two groups : (a) Normal		
	stress,(b) Shear stress. Normal stress is perpendicular to area under		
	consideration, while shear stress acts over the area. Refer Fig. (c), showing	01 mark	
	 "Major principal stress is the maximum value of normal stress acting on 		
	the principal plane, whereas, the minimum value of normal stress acting on		
	principal plane is called asminor principal stress". This is called as Maximum		
	Normal Stress theory or Principal Stress Theory.	01 mark	
	According to this maximum principal stresses are given as follows.		
	$O[1 = \{(0x + 0y)/2\} + \frac{1}{2}v\{(0x - 0y) + 4 \ 1\}$ Minimum Principle stress.		04
	$6t2 = \{(6x + 6y)/2\} - \frac{1}{2}\sqrt{\{[6x - 6y]^2 + 47^2\}}$		marks
	Also maximum shear stress,	01 mark	
	T max={ $(6x - 6y)/2$ } = $\frac{1}{2} \sqrt{[6x - 6y]^2 + 47^2}$		
b	•Keyway is a slot machined either on the shaft or in the hub to		
	accommodate the key.		
	• It is cut by vertical or horizontal milling cutter.	01 mark	
	• This is due to stress concentration near the comers of the keyway and	UT IIIdIK	
	reduction in the crosssectionalarea of shaft.		
	• In other words, the torsional strength of shaft is reduced.	01 mark	
	• The following relation of reduction factor is used to analyze the		
	weakening effect of keyway is given by H. F. Moore.		

	e = 1 - 0.2 (w/d) - 1.1(h/d) Where, e = shaft strength factor = Strength of shaft with keyway/Strength Of shaft Wlithout keyway	01 mark	
	 w = Width of keyway, d = Diameter of shaft h = Depth of keyway = 112 x thickness of key = 1/2 x t It is usually assumed that strength of keyed shaft is 75% of solid shaft. Thus, after finding out dimensions of key, the reduction factor 'e' is calculated and for safe design, its value should be less than 0.75. 	01 mark	04 marks
с	The sketches of basic welding joints are given as follows.		
	A BUTT JOINT B. CORNER JOINT C. TEE JOINT C. TEE JOINT D. LAP JOINT	02 marks	
	E. EDGE The applications of the above joints are as follows.	for any four sketches	
	Butt Joint A butt weld, or a square-groove, is the most common and easiest to use. Consisting of two flat pieces that are parallel to one another, it also is an economical option. It is the universally used method of joining a pipe to itself, as well as flanges, valves, fittings, or other equipment. However, it is limited by any thickness exceeding 3/16". Corner Joint A corner weld is a type of joint that is used between two metal parts and is located at right angles to one another in the form of a L. As the name indicates, it is used to connect two pieces together, forming a corner. This weld is most often used in the sheet metal industry and is performed on the outside edge of the piece. Edge Joint	SKETCHES	
l		l	l

the successive rows as shown in Fig. It is usually denoted by Pb.		
(iii)Diagonal pitch. It is the distance between the centres of the rivets in		
adjacent rows of zig-zagriveted joint as shown in Fig. It is usually denoted	02	
by Pd.	marks	
(iv)Margin or marginal pitch. It is the distance between the centre of rivet	for 04	04
hole to the nearest edge of the plate as shown in Fig. It is usually denoted	terms	marks
by m.		

	1		
	 i) For Mild steel : A. Proportional limit: Hooke's law holds good up to point A and it is known as proportional limit. It is defined as that stress at which the stress-strain curve begins to deviate from the straight B. Elastic limit: The material has elastic properties up to the point B. This point is known as elastic limit. It is defined as the stress developed in the material without any permanent set C & D. Yeild Point: There are two yield points C and D. The points C and D are called the upper and lower yield points respectively. E. Ultimate stress: At E, the stress, which attains its maximum value is known as ultimate stress. ii) For Cast iron : F. Breaking strength: Failure without any indication. 	01 mark 01 mark	04 marks
h	 Following are the advantages and disadvantages of welded joints over other method joints. Advantages 1. The welded structures are usually lighter than riveted structures. This is due to the reason that in welding, gussets or other connecting components are not used. 2. The welded joints provide maximum efficiency (may be 100%) which is not possible in case of riveted joints. 3. Alterations and additions can be easily made in the existing structures 4. As the welded structure is smooth in appearance, therefore it looks pleasing. 5. In welded connections, the tension members are not weakened as in the case of riveted joints. 6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself. 7. Sometimes, the members are of such a shape (i.e. circular steel pipe) that they afford difficulty for riveting. But they can be easily welded. 8. The welding provides very rigid joints. This is in line with the modern trend of providing rigid frames. 9. It is possible to weld any part of a structure at any point. But riveting requires enough clearance. 10. The process of welding takes less time than the riveting. Disadvantages 1. Since there is an uneven heating and cooling during fabrication, therefore the member may get distorted or additional stresses may develop. 2. It requires a highly skilled labour and supervision. 3. Since no provision is kept for expansion and contraction in the frame, therefore there is a possibility of cracks developing in it. 4. The inspection of welding work is more difficult than riveting work. 	02 marks for any four advanta ges 02 marks for any two disadva ntages	04 marks

٦

2.	Attempt any TWO of the following:		2X8=16
(a) i	It is defined, in general, as the ratio of the maximum stress to the working stress. Mathematically, Factor of safety = Maximum stress/Working or design stress In case of ductile material e.g. mild steel, where the yield point is clearly defined, the factor of safety in based upon the yield point stress. In this case, Factor of safety =Yield point stress/Working or design stress In case of brittle material e.g. cast iron, the yield point is not well defined as	01 mark	
	for ductile materials. Therefore, the factor of safety for brittle materials is based on ultimate stress Factor of safety=Ultimate stress/ Working or design stress This relation may be used for ductile materials. The following things are considered for the selection of Factor of Safety. i) The type of product. (i.e. whether it is a utility good or machine part etc.) ii) The importance/ position of the component in the assembly. iii) The extent of damage to the people and/or to other parts that may take	01 mark	
	place due to the failure of the part. iv) The cost of the material.	02 marks	04 marks
ii	Stress concentration can be defined as the increase in the iintensity of stress due to various factors such as abrupt change in cross section, sharp corners, presence of holes, internal deformities, cracks, etc. The presence of stress concentration cannot be totally eliminated but it may be reduced to some extent. A device or concept that is useful in assisting a design engineer to visualize the presence of stress concentration and how it may be reduced is that of stress flow lines, as shown in Fig. The reduction of stress concentration means that the stress flow lines shall maintain their spacing as far as possible.	01 mark	

	(a) Poor (b) Good (c) Preferred Method of reducing stress contraction in cylinder members with shoulders $(a) Poor (b) Good (c) Preferred$ Method of reducing stress contraction in cylinder members with shoulders $(b) Preferred$ Method of reducing stress contraction in cylinder members with holes	01 mark	
	(a) Poor (b) Good (c) Preferred (c) Preferred Method of reducing stress contraction in threaded members with holes The stress concentration effects of a press fit may be reduced by making more gradual transition from the rigid to the more flexible shaft. The various ways of reducing stress concentration for such cases are shown in	01 mark 01 mark	04 marks
b	Fig. a,b,c Given data: P = 8 kW = 8 X 10^3 W N = 750rpm 7 s = 35 MPa = 35 Nzmm ² 7 ci = 15 N/mm ² , 6t = 6ck = 60 N/mm ² The power transmitted by steel shafts, P= 2 π NT /60 TherforeTorque = T = P X 60 /2 π N = 8 x 103 x 60 / 2 x π x 750 T = 101.859 N-m = 101.859 x 10^3 N-mm i) Design of shaft : We know that, torque transmitted by shaft is given by T= π /16 x T s x d ³ 101.859 x $10^3 = \pi$ /16 x35x d ³ Diameter of shaft. d = 25.56== 30 mm (say)	01 mark 01 mark	
	(ii)Design of hub: Usual proportions are, D = Outer diameter of hub = 2d = 2 x 30 = 60 mm L = Length of hub = $1.5 \times d = 1.5 \times 30 = 45$ mm k = d/D = $30/60 = 0.5$ Considering hub as a hollow shaft transmitting the same torque as that of shaft.Then we have	or mark	

	$T = \pi/16 \times \pi ci \times D^{3}(1-k^{4})$ 101.859 x 10 ³ = $\pi/16 \times \pi ci \times 60^{3}(1-0.5^{4})$ $\pi ci=2.561 \text{ N/mm}^{2}$ Thus, the induced shear stress in the cast iron hub is less than the given permissible shear stress. Hence, the design is safe. (iii) Design of flange: Take tf=d / 2 = 30 / 2 = 15 mm While transmitting the torque, the flange is under shear. The torque transmitted is	02 marks	
	T = Circumference of hub x Thickness of flange x Shear stress x Radius of hub = $(\pi \times D) \times \text{tf} \times 7 \text{ f} \times D/2$ 101.859 x 10 ³ = $(\pi \times 60) \times 15 \times 7 \text{ f} \times 60/2$ 7 f=1.2 N/mm ² Thus, induced shear stress is less than given permissible shear stress for flange material.Hence, the design is safe. iv) Design of key: It is nothing but checking the safety of the key in shear & crushing. For the shaft of 30 mm dia recommended size of key is w=10mm & t=08 mm Checking the key in shear : We know, Torque transmitted by the shaft, $T=L \times x \times \mathbf{T} \times (d/2)$ where T is the induced stress in key material.	02 marks	
	Hence, $101.859 \times 10^3 = 45 \times 10 \times \tau \times 30/2$ $\tau = 15.09 \text{ N/mm}^2$ which is less than τ s (35 MPa) Hence the key is safe in shear. Similarly checking the key for crushing, $T = L \times (t/2) \times 6c \times (d/2)$ Hence, $101.859 \times 10^3 = 45 \times 8/2 \times 6c \times 30/2$ $6c = 37.72 \text{ Mpa which is less than } 6ck = 60 \text{ N/mm}^2$ Hence the key is safe in crushing	01 mark 01 mark	08 marks
(c)	 i) The general procedure in machine design is as follows: 1. Recognition of need: First of all, make a complete statement of the problem, indicating the need, aim or purpose for which the machine is to be designed. 2. Synthesis (Mechanisms): Select the possible mechanism or group of mechanisms which will give the desired motion. 3. Analysis of forces: Find the forces acting on each member of the machine and the energy transmitted by each member. 4. Material selection: Select the material best suited for each member of the machine. 5. Design of elements (Size and Stresses):Find the size of each member of the machine and the machine by considering the force acting on the member and the permissible stresses for the material used. It should be kept in mind that each member should not deflect or deform than the permissible limit. 	01 mark each for any four points.	

 6. Modification: Modify the size of the member to agree with the past experience and judgement to facilitate manufacture. The modification may also be necessary by consideration of manufacturing to reduce overall cost. 7. Detailed drawing: Draw the detailed drawing of each component and the assembly of the machine with complete specification for the manufacturing processes suggested. 8. Production: The component, as per the drawing, is manufactured in the workshop. 	
General procedure in Machine Design.	
Need or Aim Synthesis (Mechanisms) Analysis of forces Material selection Design of elements (Size and stresses) Modification Detailed drawing Production	
 ii) The general considerations in machine design are as follows. 01)Type of Load and Stresses caused by the Load:- The load on the Machine Component,may act in several ways due to which the Internal Stresses are set up. 	
02)Motion of Parts:- The successful operation of any Machine depends largely upon the simplest arrangements of the Parts,which will give the required motion.The Motion of the Part may be A)RectilinearMotion,which includes Unidirectional and Reciprocating Motion. B)CurvilinearMotion,which includes Rotary,Oscillatory Simple Hormonic. C)Constant Velocity. D)Constant or Variable Acceleration.	
03)Selection of Material:- Every Machine Design Engineer should have a thorough knowledge of the Properties of Material and their behaviour under working conditions.	
04)Form and Size of the Parts:- In order to design any Machine Part for form and size, it is necessary to	

	know the Forces which the Part must sustain. Any suddenly applied or impact load must be taken into consideration, which may cause failure. The smallest Practicable Cross-Section may be used, but it may be checked that the Stresses induced in the Designed Cross-Section are reasonably safe.		
	05)Frictional Resistance and Lubrication:- There is always a Loss of Power due to Frictional Resistance.Careful attention must be given to the matter of Lubrication of all surfaces which moves in contact with others.		
	06)Safety of Operator:- A Machine Designer should always provide safety device for the safety of the operator.The Safety Appliances should in no way interfere with the operation of the Machine.		
	07)Use of Standard Parts:- The use of Standard Parts are closely related to the Cost of Machine, because the Cost of Standard Parts is only a fraction of the cost of similar parts made to order.		
	08)Convenient and Economical Features:- The operating feature of the Machine should be carefully studied.TheStarting,Controlling and Stopping Levers should be located on the basis of convenient handling.		
	09)Workshop Facilities:- A Design Engineer should be familiar with limitation of his Employer's Workshop, in order to avoid the necessity of having work-done in some other Workshop.	01 mark	
	10)Assembling:- Every Machine must be Assembled as a unit before it can function. The final Location of any Machine is important and the Design Engineer must anticipate the exact location and the local facilities for erection.	any four points.	08 marks
	Above considerations are most important in machine design engineering.		
3.	Attempt any TWO of the following:		2X8=16
(a)	Given		
	K=0.8;P=400KW;N=225RPM;M=5000N.m;τ=50MPa		
	Solution		
	$T=60P/2\pi N = (60 \times 400 \times 10^3)/(2 \times \pi \times 225)$	01 mark	
	=16976.52N.M	01	
	1e=Eulvalanttwisting moment $-\sqrt{M^2 + T^2} - \sqrt{5000^2 + 16976 52^2}$	UT mark	
	=17697.52N.m		

	=17697.52 x 10 ³ N.mm We know,	01 mark	
	Te= $(\pi / 16) \times \tau (do)^3 (1-k^4)$ 17697.52 x 10 ³ = $(\pi / 16) \times 50 (do)^3 (1-0.8^4)$ do ³ =17697.52 x 10 ³ x 16 / $\pi \times 50$ do ³ = ³ V(3053276.735)	01 mark 02 marks	
	say 150mm (Since generally shafts in this range are manufactured in the slabs of 5 mm) Ans.	01 mark 01 mark	08 marks
(b)	A key connecting the shaft and hub Let T = Torque transmitted by the shaft, F = Tangential force acting at the circumference of the shaft, d = Diameter of shaft, I = Length of key, w = Width of key. t = Thickness of key, and ' τ and $c = Shear$ and crushing stresses for the material of key. Due to the power transmitted by the shaft, the key may fail due to shearing or crushing. Considering shearing of the key, the tangential shearing force acting at the circumference of the shaft, F = Area resisting shearing x Shear stress = I x w x T	01 mark	
	Torque transmitted by the shaft, $T = Fx (d/2) = Ixwx \tau x (d/2)$ (i) Considering crushing of the key, the tangential crushing force acting at the circumference of the shaft, F = Area resisting crushing x Crushing stress = I x (t/2) x 6c	02 marks	
	Torque transmitted by the shaft, T = Fx (d/2) = I x (t/2) x 6c x (d/2)(ii)	02 marks	
	The key is equally strong in shearing and crushing, if $lxwx\tau x (d/2) = l x (t/2) x 6c x (d/2)[Equating equations (l) and (ii)]$ Or w/t = 6c /2 τ The permissible crushing stress-for the usual key material is atleast twice the permissible shearing stress. Therefore from equation (iii), we have w = t. In other words, a square key is equally strong in shearing and crushing.	01 mark 02 marks	08 marks

(c)	P 75 mm P	01 mark for figure	
	Given: Width = 75 mm; Thickness = 12.5 mm; σ_t = 70 MPa = 70 N/mm ² ; t = 56 MPa = 56 N/mm ² . The effective length of weld L1 for the transverse weld may be obtained by subtracting 12.5 mm from the width of the plate. L1 = 75 - 12.5 = 62.5 mm Length of each parallel fillet for static loading	01 mark 01 mark	
	Let L2 = Length of each parallel fillet We know that the maximum load which the plate can carry is P = Area x Stress = 75 x 12.5 x 70 = 65 625 N Load carried by single transverse weld, P1= 0.707 s x L1 X σ_t = 0.707 x 12.5 x 62.5 x 70 = 38 664 N	01 mark 01 mark	
	and the load carried by double parallel fillet weld, P2= 1.414 s x L2 X T= 1.414 x 12.5 x 12 x 56 = 990L2 N Load carried by the joint (P),	01 mark	
	65625 = P1 + P2 = 38 664 + 990 L2 so L2 = 27.2 mm Adding 12.5 mm for starting and stopping of weld run we have L2= 27.2 + 12.5 = 39.7 says 40 mm Ans.	01 mark	08 marks

	Ps = $nx\pi / 4 xd^{4}x \tau$ (i)		
	Knowing the inner diameter of the boiler shell (D) and the pressure of		
	steam (P), the total shearing load acting on the circumferential joint.		
	Ws = π /4 x D ² x P(ii)		
	From equations (i) and (ii), we get		
	$n \times \pi / 4 \times d^2 x = \pi / 4 \times D^2 x P$		
	$n = (D/d)^2 \times (P/\tau)$	01 mark	
	4. Pitch of rivets. If the efficiency of the longitudinal joint is known, then the		
	efficiency of the circumferential joint may be obtained. It is generally taken		
	as 50% of tearing efficiency in longitudinal joint, but if more than one		
	Knowing the efficiency of the circumferential lan joint (TIc)' the nitch of the		
	rivets for the lan joint (P1) may be obtained by using the relation:	01 mark	
	nc = (P1 - d)/P1	01 man	
	5. Number of rows. The number of rows of rivets for the circumferential		
	joint may be obtained from the following relation:		
	Number of rows = Total number of rivets /Number of rivets in one	01 mark	
	the number of rivets in one row		
	$\pi(D + t) / \beta I$		
	6 After finding out the number of rows the type of the joint (i.e. single		
	riveted or double riveted etc.) may be decided. Then the number of rivets	01 mark	
	in a row and pitch may be re-adjusted. In order to have a leak-proof joint,		
	the pitch for the joint should be checked from Indian Boiler regulations.	01 mark	
	7. margin , m = 1.5 d where d = dia. of rivet.		
	8. After knowing the distance between the rows of rivets (Pb)' the overlap	01	08
	of the plate may be fixed by using the relation, Overlap = (No. of rows of rivets (1)) Bb \downarrow m	01 mark	marks
	where $m = Margin$		
(b)			
(~)			
	$P_{\text{rest}} = P_{\text{rest}} = $		
	C.G.		
	$ l_b \rightarrow b$ P	02	
		marks	
	are while on each weld. Assuming that the second second equally	figure	
	Letla= Length of weld at the top,	ligure	
	lb = Length of weld at the bottom,		
	1= Total length of weld = Ia + Ib		
	P = Axial load,		
	a = Distance of top weld from gravity axis,		

	 b = Distance of bottom weld from gravity axis, and f = Resistance offered by the weld per unit length. Moment of the top weld about gravity axis 		
	= $l_a x f x a$ and moment of the bottom weld about gravity axis .	01 mark	
	Since the sum of the moments of the weld about the gravity axis must be zero, therefore,	01 mark	
	$l_a \mathbf{X} + \mathbf{X} \mathbf{a} = 1 \mathbf{b} \mathbf{X} \mathbf{I} \mathbf{X} \mathbf{b} \dots \dots (\mathbf{i})$ We know that $l = 1 \mathbf{a} + 1 \mathbf{b} \dots \dots (\mathbf{i})$	01 mark	
	From equations (i) and (ii), we have	01 mark	
	$ 10 - (1 \times 0)/(a + 0) $	01 mark	08 marks
(c)	Given: P = 2.5 N/mm ² ; D = 1.6 m = 1600 mm . σ t= 75 MPa = 75 N/mm ² : , τ = 60 MPa = 60 N/mm ² : , σ c = 125 MPa = 125 N/mm ² Design of circumferential joint The circumferential joint for a steam boiler may be designed as follows: 1. The thickness of the boiler shell (t) , is calculated as		
	$t = (P.D/2stx\eta)+1mm$		
	D =dia. of the boiler shell ,		
	st = permissible tensile stress of the boiler plate η = efficiency of the joint.		
	Hence, $t = (2.5 \times 1.6/2 \times 75) + 1 \text{mm} = 27.6 \text{ say } 28 \text{ mm}$. 2. dia. of rivet d = $6\sqrt{t} = 6\sqrt{28} = 31.71 \text{ mm}$. Hence the rivet of 33mm dia is selected.	01 mark 01 mark	
	3.Number of rivets Let n = Number of rivets. We know that shearing resistance of the rivets		
	=n x($\pi/4$) xd ² x τ (i) and total shearing load acting on the circumferential joint =($\pi/4$) xD ² x P		
	From equations (i) and (ii), we get $n x(\pi/4) xd^2 x \tau = (\pi/4) x D^2 x P$ $n=(D^2 x P)/(d^2 x \tau) = (1600^2 x 2.5)/(34.5^2 x 60) = 89.6 \text{ say } 90 \text{ Ans.}$ 4. Pitch of rivets	02 marks	
	Assuming the joint to be double riveted lap joint with zig-zag riveting, therefore number of rivetsper row $= 90/2 = 45$		
	We know that the pitch of tile rivets, P1=[π (D+t)] /Number of rivets per row= π (1600+28) /45 = 113.7 mm		

Let us take pitch of the rivets, P1 = 140 mm Ans.	01 mark	
5. Efficiency of the joint		
We know that the efficiency of the circumferential joint,		
ηc= (P1 – d) / p1 = (140 - 34.5) /140 = 0.753 or 75.3%	01 mark	
6. Distance between the rows of rivets		
We know that the distance between the rows of rivets for zig-zag riveting,		
= 0.33 P1 + 0.67 d = 0.33 x 140 + 0.67 x 34.5 mm		
= 69.3 say 70 mm Ans.	01 mark	
7. Margin		
We know that the margin,		
m = 1.5 d = 1.5 x 34.5		08
= 51.75 say 52 mm Ans.	01 mark	marks

	Width of the section X-X, $w = 2\pi R / n$ where n is the number of bolts. Section modulus, $Z = 1/6 \times w(t2)^2$ Knowing the tensile stress for the cylinder flange material, the value of t2 may be obtained by using the bending equation i.e. $\delta t = M / Z$	01 mark 01 mark	08 marks
(b)	Design of Circular Flanged Pipe Joint Fig. 1 Cosider a circular flanged pipe joint as shown in Fig.1. In designing such joints, it is assumed that the fluid pressure acts in between the flanges and tends to separate them with a pressure existing at the point of leaking. The bolts are required to take up tensile stress in order to keep the flanges together. The effective diameter on which the fluid pressure acts, just at the point of leaking, is the diameter of a circle touching the bolt holes. Let this diameter be D 1. If d1 is the diameter of bolt holeandDp is the pitch circle diameter, then D1 = Dp-d1 \therefore Force trying to separate the two flanges, Pipes and Pipe Joints $F = \pi/4(D1)^2 \times P$ (i) Let n = Number of bolts, dc = Core diameter of the bolts, and ot = Permissible stress for the material of the bolts. \therefore Resistance to tearing of bolts $= \pi/4 \times (dc)^2 \times n$ (ii)	01 mark	
	Assuming the value of dc the value of n may be obtained from equations (i) and (ii). The number of bolts should be even because of the symmetry of the section. The circumferential pitch of the bolts is given by $P = (\pi Dp)/n$ In order to make the joint leakproof, the value of Pc, should be between 20 Vd1 to 30 Vd1:, where d1 is the diameter of the bolt hole. Also a bolt of less than 16 mm diameter should never be used	01 mark	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	absorb a large portion of the energy, thus relieving the material at the sections near the thread. The bolt, in this way, becomes stronger and lighter and it increase shock absorbing capacity of the bolt because of an increased modulus of resilience. This gives us bolts of uniform strength . The resilience of a bolt	01 mark 02	04
	may also be increased by increasing its length.	marks	marks
ii	Types of Shafts: The following two types of shafts are important from the subject point of view: 1. Transmission shafts: These shafts transmit power between the		
	source and machines absorbing power. The counter shafts, line shafts, overhead shafts and all factory shafts are transmission shafts. Since these shafts carry machine parts such as pulleys, gears		
	etc., therefore they subjected to bending in addition to twisting.		
	itself. The crank shaft is an example of machine shaft.	01 mark	
	The material used for shafts should have the following properties:	01	
	1. It should have night strength.	01 mark	
	3. It should have low notch sensitivity factor	anv	
	4. It should have good heat treatment properties.	three	04
	5. It should have high wear resistant properties.	properti	marks
(b)	The Method of Sections		
	This method is used for the analysis of frames which are:		
	i) symmentrical in nature &	01	
	II) Have large no. of members.	01 mark	
	imaginary "cut" (shown here as $x-x$) through the frame. Since frame		
	members are subjected to only tensile or compressive forces along their		
	length, the internal forces at the cut member will also be either tensile or		
	compressive with the same magnitude. This result is based on the		
	equilibrium principle and Newton's third law.	01 mark	
	D. JEN X. JEN.		
	A F E A BA X BD.	01 mark for	
	Steps for Analysis	inguie	
	1. Decide how you need to "cut" the frame. This is based on:		
	a) where you need to determine forces, and, b) where the total number of		
	unknowns does not exceed three (in general).	01 mark	
	2. Decide which side of the cut frame will be easier to work with(minimize		

CE= 5KN	(Tensile)			
Force tab	le			
Sr.NO.	Member	Force in KN	Nature	
1.	AB	5.6	Compressive	
2.	BC	2.5	Compressive	
3.	CD	5.6	Compressive	
4.	DE	2.5	Tensile	
5.	AE	2.5	Tensile	
6.	BE	0	-	
7.	FE	2.5	Tensile	
8.	CE	5	Tensile	
9.	AF	2.5	Tensile	