
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 1 of 32

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess

the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the figure.

The figures drawn by candidate and model answer may vary. The examiner may give credit for any

equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values

may vary and there may be some difference in the candidate‟s answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer

based on candidate‟s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent

concept.

 Marks

1. a) Attempt any three: (4×3=12)

1) State functions of relocating loader.

(Each Function – 1 Mark)

Ans:

i) Provides multiple procedure segments, but only one data segment.

ii) Provides flexible intersegment referencing ability but does not facilitate access to the data

segments that can be shared.

iii) The transfer vector linkage is only useful for transfers, and is not well suited for loading or

storing external data.

iv) The transfer vector increases the size of the object program in memory

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 2 of 32

2) Draw the foundation of system programming.

(Correct Diagram – 4 Marks)

Ans:

3) Explain general design of Assembler.

(all design step - 4 Marks)

Ans:

Step 1: Specify the problem

This includes translating assembly language program into machine language program using two

passes of assembler. Purpose of two passes of assembler are to determine length of instruction,

keep track of location counter, remember values of symbol, process some pseudo ops, lookup

values of symbols, generate instructions and data, etc.

Step 2: Specify data structures

This includes establishing required databases such as Location counter(LC), machine operation

table (MOT), pseudo operation table (POT), symbol table(ST), Literal Table(LT), Base Table

(BT), etc.

Step 3: Define format of data structures

This includes specifying the format and content of each of the data bases – a task that must be

undertaken before describing the specific algorithm underlying the assembler design.

Step 4: Specify algorithm

Specify algorithms to define symbols and generate code

Step 5: Look for modularity

This includes review design, looking for functions that can be isolated. Such functions fall into

two categories: 1) multi-use 2) unique

Step 6: Repeat 1 to 5 on modules

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 3 of 32

4) Explain the lexical phase of compiler.

(Task - 1 Mark; Database - 2 Marks; Algorithm - 1 Mark)

Ans:

Lexical Phase

 TASKS

 The three tasks of the lexical analysis phase are:

1.To phase the source program into the basic elements or tokens of the language

2.To build a literal table and an identifier table

3.To build a uniform symbol table

 DATABASES

 These tasks involve manipulations of five databases. Possible forms for these are:

1. Source program – original form of program; appears to the compiler as a string of

characters

2. Terminal table-a permanent database that has an entry for each terminal symbol (e.g.

arithmetic operators , keywords, non-alphanumeric symbols).Each entry consists of the

terminal symbol, an indication of its classification (operator ,break character),and its

precedence (used in later phases)

 ≠

Symbol Indicator Precedence

3. Literal table- created by lexical analysis to describe all literals used in the source program.

There Is one entry for each literal ,consisting of a value ,a number of attributes, an address

denoting the location of the literal at execution time (filled in by a later phase), and other

information (e.g., in some implementation we may wish to distinguish between literals used

by the program and those used by the compiler ,such as the literal 31 in the expression

BINARY FIXED (31)).The attribute ,such as data type or precision ,can be deduced from

the literal itself and filled in by lexical analysis.

Litera

l

Bas

e

Scal

e

Precisio

n

Other

infor

mati

on

Addres

s

Literal table entry

4. Identifier table – created by lexical analysis to describe all identifiers used in the source

program. There is one entry for each identifier. Lexical analysis creates the entry and

places the name of the identifier into that entry .Since in many languages identifiers may

be from 1 to 31 symbols long, the lexical phase may enter a pointer in the identifier table

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 4 of 32

for efficiency of storage. The pointer points to the name in a table of names .Later phases

will fill in the data attributes and addresses of each identifier.

Name Data attributes Address

5. Uniform Symbol table – created by lexical analysis to represent the program as a string of

tokens rather than of individuals characters. (Space and comments in the source are not

represented by uniform symbol and are not used by future phase. There is one uniform

symbol for every token in the program.)Each uniform symbol contains the identification

of the table of which the token is a member (e.g., a pointer to the table or a code) and its

index within that table.

Table Index

ALGORITHM

The first task of the lexical analysis algorithm is to parse the input character string into tokens.

The second is to make the appropriate entries in the tables .A token is substring of the input string

that represent a basic element of the language .It may contain only simple characters and may

not include another token. To the rest of compiler, the token is the smallest unit of currency.

Only lexical analysis and the output processor of the assembly phase concern themselves with

such elements as characters .Uniform symbols are the terminal symbols for syntax analysis.

b) Attempt any one: (6×1=6)

1) Explain components of system software with examples.

(Description - 1 Mark each; Example - ½ Mark)

Ans:

Assembler: The program known as assembler is written to automate the translation of assembly

language to machine language. Input to the language is called as source program and output of

assembler is machine language translation called as object program.

ALP → ASSEMBLER → Machine Language equivalent + Information required by the

loader

Loader: Loader is a system program which places program into the memory and prepares for

execution. Loading a program involves reading the contents of the executable file containing the

program instructions into memory, and then carrying out other required preparatory tasks to

prepare the executable for running. Once loading is complete, the operating system starts the

program by passing control to the loaded program code. Eg. Boot Strap loader.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 5 of 32

Macro: A macro is a rule or pattern that specifies how a certain input sequence (often a sequence

of characters) should be mapped to a replacement output sequence (also often a sequence of

characters) according to a defined procedure. The mappings process that instantiates (transforms)

a macro use into a specific sequence is known as macro expansion. A facility for writing macros

may be provided as part of a software application or as a part of a programming language. In the

former case, macros are used to make tasks using the application less repetitive. In the latter case,

they are a tool that allows a programmer to enable code reuse or even to design domain-specific

languages.

 MACRO MACRO_NAME

 …

 …

 …

 MEND

Compiler: A compiler is a computer program (or set of programs) that transforms source code

written in a programming language (the source language) into another computer language (the

target language, often having a binary form known as object code).The most common reason for

converting a source code is to create an executable program. Eg. Javac , TurboC, CC (used in

Unix/Linux).

2) State use of macro with suitable example.

(Description - 4 Marks; Example - 2 Marks)

Ans:

Macro is used to give single line abbreviation to group of lines which are repeatedly used in

program. These statements are combined and kept in macro. Whenever such single line

abbreviation is encountered macro processor expands/ replaces this abbreviation with associated

group of lines.

 .

.

.

 A

A

A

 1,DATA

2,DATA

3 ,DATA

Add contents of DATA to register 1

Add contents of DATA to register 2

Add contents of DATA to register 3

 .

.

.

 A

A

A

 1,DATA

2,DATA

3 ,DATA

Add contents of DATA to register 1

Add contents of DATA to register 2

Add contents of DATA to register 3

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 6 of 32

 .

.

.

DATA DC F‟5‟

 .

.

.

Macro processor performs following task.

Recognizing macro definitions: A macro pre-processor must recognize macro definitions that

are identified by the MACRO and MEND pseudo-ops. The macro definitions can be easily

recognized, but this task is complicated in cases where themacro definitions appear within

macros. In such situations, the macro pre-processor must recognize the nesting and correctly

matches the last MEND with the first MACRO.

Macro Definition Table

 80 Bytes per entry

Index Card

. .

. .

. .

15 &LAB INCR &ARG1, &ARG2,

&ARG3

16 #0 A 1,#1

17 A 2,#2

18 A 3,#3

19 MEND

. .

. .

. .

Saving the definitions: The pre-processor must save the macro instructions definitions that can

be later required for expanding macro calls.

 8 Bytes 4

Bytes

Index Name MDT

Index

. . .

. . .

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 7 of 32

. . .

3 ”INCRbbbb” 15

. . .

. . .

. . .

Recognizing macro calls: The pre-processor must recognize macro calls along with the macro

definitions. The macro calls appear as operation mnemonics in a program.

ARGUMENT LIST ARRAY

 8 bytes per entry

Index Argument

0 “LOOP1bbb”

1 “DATA1bbb”

2 “DATA2bbb”

3 “DATA3bbb”

Replacing macro definitions with macro calls: The pre-processor needs to expand macro calls

and substitute arguments when any macro call is encountered. The preprocessor must substitute

macro definition arguments within a macro call.

2. Attempt any two : (8×2=16)

1) Write an algorithm for assembler first pass. Explain it in detail.

(Algorithm - 4 Marks; Description - 4 Marks)

Ans:

Algorithm for Pass 1 assembler:

STEP 1: BEGIN

STEP 2: LC = 0

STEP 3: READ CARD

STEP 4: SEARCH IN PSEUDO-OP TABLE

 STEP 4. 1 IF FOUND THEN

 IF CARD = DS/DC THEN

 ADJUST LC TO PROPER ALIGNMENT

 L = LENGTH OF DATA FIELD

 GO TO STEP 4.2.4

 ELSE IF CARD = EQU THEN

 EVALUATE OPERAND

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 8 of 32

 ASSIGN VALUE IN SYMBOL TABLE

 GO TO STEP 5

ELSE IF CARD = USING/DROP

GOTO STEP 5

 ELSE IF CARD = END THEN

 ASSIGN STORAGE LOCATIONS TO LITERAL

 REWIND COPY FOR PASS 2

 STEP 4. 2 ELSE

 STEP 4.2.1 SEARCH IN MACHINE-OP TABLE

STEP 4.2.2 L=LENGTH

 STEP 4.2.3 PROCESS FOR LITERALS

 STEP 4.2.4 IF SYMBOLS IN LABEL FIELD THEN

 ASSIGN CURRENT VALUE OF LC TO SYMBOL

 LC = LC +1

 ELSE

LC = LC+1

STEP 5: WRITE COPY OF CARD ON FILE USE BY PASS 2.

STEP 6: GO TO STEP 3

PASS 1: DEFINE SYMBOLS

The purpose of the first pass is to assign a location to each instruction and data defining pseudo-

instruction ,and thus to define values for symbols appearing in the label; fields of the source

program .Initially ,the Location Counter (LC) is set to the first location in the program (relative

address 0) then a source statement is read the operation code field is examine to determine if it is

pseudo-op; if it is not, table of machine op-code (MOT) is search to find match of source stamen.

Op-code field the match MOT entry specifies the length (2, 4 or 6 Bytes) of the instructions the

operand field is scanned for the presence of literal. If a new literal is found, it is entered into the

literal table (LT) for later processing. The label field of source statement is then examine for the

presence of the symbol if there is label, symbol is saved in the symbol table (ST) along with the

current value of the location counter. Finally, the current value of the Location counter is

increment by Length of the instruction. And the copy of a source card is saved for used by Pass 2.

The above sequence is then repeated for the next instruction.

The simplest procedure occurs for USING and DROP Pass 1 is only concern with pseudo-ops that

defines symbols (Labels) or affect the location counter; USING and DROP do neither assembler

need only save the USING and DROP card for Pass 2.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 9 of 32

In case of EQU pseudo-op during Pass 1 We can concern only with defining the symbol in the

label field this require evaluating the expression in the operand field (The symbol in the operand

field and EQU statement must have been defined previously).

The DS and DC pseudo-ops can affects both the location counter and definition of symbols in

Pass 1. The operand field must be examine to determine the number of bytes of storage require

due to requirement for certain alignment conditions. It may be necessary to adjust the location

counter before defining the symbol.

When the END Pseudo –op is encountered Pass 1 is terminated before transferring to control to

Pass 2. There are various “housekeeping” operation that must be performed this including

assigning location the literal that have been collected during Pass 1, a procedure that is very

similar that for the DC pseudo-op, finally conditions are reinitialized for processing by Pass 2.

2) Explain the database used by pass I and Pass II of an assembler.

(Pass 1 Database - 4 Marks; Pass 2 Database - 4 Marks)

Ans:

 Pass 1 data bases

 Input source program

 A LC to keep track of each instruction location

 A MOT (Machine Operation Table)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 10 of 32

 A POT (Pseudo operation Table)

 A ST (Symbol Table)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 11 of 32

 A LT (Literal Table)

 A copy of the input to be used by pass 2

Pass 2 databases

 Copy of source program input to pass 1

 LC: Same as Pass I

 MOT: Same as Pass I

 POT: Same as Pass I

 ST: Same as Pass I

 BT (Base table)

 Output in machine code to be needed by the loader

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 12 of 32

3) Explain simple machine independent optimization algorithm with an example.

(Description of Simple Machine Independent - 4 Marks; Example - 4 Marks; any relevant

example shall be considered)

Ans:

Machine- independent optimization:

 When a sub-expression occurs in a same statement more than once, we can delete all

duplicate matrix entries and modify all references to the deleted entry so that they refer to

the remaining copy of that sub-expression as shown in following table.

 Compile time computation of operations, both of whose operands are constants

 Movement of computations involving operands out of loops

 Use of the properties of Boolean expressions to minimize their computation

 Machine independent optimization of matrix should occur before we use the matrix as a

basis for code generation

Example:

 Operat

or

Operand

1

Operand 2 Matri

x

entrie

s

 Operato

r

Operand

1

Operand

2

Matrix

entries

1 - START FINISH M1 1 - START FINISH M1

2 * RATE M1 M2 2 * RATE M1 M2

3 * 2 RATE M3 3 * 2 RATE M3

4 - START FINISH M4

5 - M4 100 M5 5 - M4 100 M5

6 * M3 M5 M6 6 * M3 M5 M6

7 + M2 M6 M7 7 + M2 M6 M7

8 = COST M7 8 = COST M7

Matrix with common sub-expressions Matrix after elimination of common sub-

expressions

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 13 of 32

3. Attempt any four: (4×4=16)

1) List various applications of system software

(Any four applications – 4 Marks)

Ans:

1. It increases the productivity of computer which depends upon the effectiveness, efficiency and

sophistication of the systems programs.

2. Compilers are system programs that accept people like languages and translate them into

machine language.

3. Loaders are system programs that prepare machine language program for execution.

4. Macro processors allow programmers to use abbreviation.

5. Provides efficient management of various resources.

6. It manages multiprocessing, paging, segmentation, resource allocation.

7. Operating system and file systems allow flexible storing and retrieval of information.

2) Explain hash and random entry searching.

(Description of hash and random entry searching - 4 Marks)

Ans:

All Binary Search algorithms, which are fast, but can only operate on tables that are ordered and

packed, i.e. tables that will have adjacent items ordered by keywords. Such search procedures

may therefore have to be used in conjunction with a sort algorithm which both orders and packs

the data.

Actually, it is unnecessary for the table to be ordered and packed to achieve good speed in

searching. This is also possible to do considerably better with an unpacked, unordered table,

provided it is sparse, i.e. the number of storage spaces allocated to it exceeds the number of items

to be stored.

It is observed that the address calculation sort gives good results with a sparse table. However,

having to put elements in order slows down the process. A considerable improvement can be

achieved by inserting element in a random (or pseudo-random) way.

The random entry number K is generated from the key by methods similar to those used in

address calculation. If the K the some other cell must be found for the insertion. The first problem

is the generation of a random number from the key. It is to design a procedure that will generate

pseudo-random, consistent table positions for keywords.

One fairly good prospect for four character EBCDIC keywords is to simply divide the keyword

by the table length N and use the remainder. This scheme works well as long as N and the key

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 14 of 32

size (32 bits in case) have no common factors. For a given group of M keywords the remainders

should be fairly evenly distributed over)....(N-1).

3) Outline the algorithm for syntax analysis phase of compiler.

(4 steps - 1 Mark each)

Ans:

The algorithm for syntax analysis phase is as follows:

1. Reductions are tested consecutively for match between Old Top of Stack field and the actual

Top of Stack, until match is found.

2. If match is found, the action routines specified in the action field are executed in order from left

right.

3. When control return to the syntax analyzer, it modifies the Top of Stack to agree with the New

Top of Stack field.

4. Step 1 is the repeated starting with the reduction specified in the next reduction field

4) Explain dynamic binder loading scheme.

(Description of dynamic binder loading scheme - 4 Marks)

Ans:

In dynamic linking, the binder first prepares a load module in which along with program code the

allocation and relocation information is stored. The loader simply loads the main module in the

main memory. If any external ·reference to a subroutine comes, then the execution is suspended

for a while, the loader brings the required subroutine in the main memory and then the execution

process is resumed. Thus dynamic linking both the loading and linking is done dynamically.

Advantages

1. The overhead on the loader is reduced. The required subroutine will be load in the main

memory only at the time of execution.

2. The system can be dynamically reconfigured.

Disadvantages

1. The linking and loading need to be postponed until the execution. During the execution if at

all any subroutine is needed then the process of execution needs to be suspended until the

required subroutine gets loaded in the main memory

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 15 of 32

5) Explain the meaning of top down and bottom up parser.

 (Top down parser – 2 Marks and bottom up parser – 2 Marks)

Ans:

Top-down Parser

The top-down parsing technique parses the input, and starts constructing a parse tree from the root

node gradually moving down to the leaf nodes. It can be done using recursive decent or LL(1)

parsing method. It cannot handle left recursion. It is only applicable to small class of grammar.

Bottom-up Parser

Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction till it

reaches the root node. It starts from a sentence and then apply production rules in reverse manner

in order to reach the start symbol. It is a table driven method and can be done using shift reduce,

SLR, LR or LALR parsing method. It handled the left recursive grammar.

It is applicable to large class of grammar.

Consider the grammar

S → cAd

A → ab | a

and the input string w = cad

Fig: Top – Down Parsing

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 16 of 32

4. A) Attempt any three: (4×3=12)

1) How sub-routine linkage are applied in loaders?

(Description - 4 Marks)

Ans:

 A main program A wishes to transfer to subprogram B. The programmer, in program A, could

write a transfer instruction (e.g BAL 14 B) to subprogram B. However, the assembler does not

know the value of this symbol reference and will declare it as an error (undefined symbol)Unless

a special mechanism has been provided. This mechanism is typically implemented with a

relocating or a direct linking The assembler pseudo-op EXTERN followed by a list of symbol

indicates that these symbols are defined in other programs but referenced in the present program

.Correspondingly, if a symbol is defined in one program and referenced in others, we insert it into

symbol list following the pseudo-op ENTRY .In turn the assembler will inform the loader that

these symbols may be referenced by other programs. For examples, the following sequence of

instructions may be a simple calling sequence to another program:

 MAIN START

ETRN SUBROUT

……………..

……………..

 …………….

 L 15=A(SUBROUT)…..CALL SUBROUT

BAIR 14, 15

 ..

 ..

 ..

 ..

 END

The above sequence of instructions first declares SUBROUT as an external variable ,that is

variable referenced but not defined in this program .The load instruction loads the address of that

variable into 15. The BALR instruction branches to the contains of register 15, which is the

address of SUBROUT ,and leaves the value of the next instruction in register 14.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 17 of 32

2) Apply the optimization techniques for suitable example.

(2 Marks for each; Any 2 Techniques; description is optional)

Ans:

1. Elimination of common sub expression:

The elimination of duplicate matrix entries can result in a more can use and efficient object

program. The common subexpression must be identical and must be in the same statement.

The elimination algorithm is as follows:-

i) Place the matrix in a form so that common subexpression can be recognized.

ii) Recognize two subexpressins as being equivalent.

iii) Eliminate one of them.

iv) After the rest of the matrix to reflect the elimination of this entry.

2. Compile time compute:-

Doing computation involving constants at compile time save both space and execution time for

the object program.

The algorithm for this optimization is as follows:-

i). Scan the matrix.

ii). Look for operators, both of whose operands were literals.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 18 of 32

iii). When it found such an operation it would evaluate it, create new literal, delete old line

iv). Replace all references to it with the uniform symbol for the new literal.

v). Continue scanning the matrix for more possible computation

For e.g.- A = 2 * 276 / 92 * B

The compile time computation would be

3.Boolean expression optimization:- We may use the properties of boolean expression to

shortentheir computation.

e.g. In a statement

If a OR b Or c,

Then when a, b & c are expression rather than generate code that will always test each

expression a, b, c. We generate code so that if a computed as true, then b OR c is not computed,

and similarly for b.

4.Move invariant computation outside of loops:-

If computation within a loop depends on a variable that does not change within that loop, then

computation may be moved outside the loop.

This requires a reordering of a part of the matrix. There are 3 general problems that need to be

solved in an algorithm.

1. Recognition of invariant computation.

2. Discovering where to move the invariant computation.

3. Moving the invariant computation.

Original Code is:-

For y=0 to height-1

For x=0 to width-1

i=y*width+x

Process I

Next x

Next y

here y*width is loop invarient not change in inner loop

Modified code is:-

For y=0 to height-1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 19 of 32

temp= y*width

For x=0 to width-1

i=temp+x

Process i

Next x

Next y

3) Explain four purposes of storage assignment phase of compiler.

(Each purpose - 1Mark)

Ans:

The purpose of this phase is to:

1. Assign storage to all variables referenced in the source program.

2. Assign storage to all temporary locations that are necessary for intermediate result, e.g the

results of matrix lines. These storage references were reserved by the interpretation phase and

did not appear in the source code.

3. Assign storage to literals

4. Ensure that the storage is allocated and appropriate locations are initialized (Literals and any

variables with the initial attribute)

The storage allocation phase first scans through the identifier table, assigning locations to

The storage allocation phase first scans through the identifier table, assigning locations to

each entry with a storage class of static. It uses a location counter, initialized at zero, to keep

track of how much storage it has assigned.

Whenever it finds a static variable in the scan, the storage allocation phase does the

following four steps:

1. Updates the location counter with any necessary boundary alignment.

2. Assigns the current value of the location counter to the address field of the variable.

3. Calculate the length of the storage needed by the variable (by examining its attributes). 4.

Updates the location counter by adding this length to it. Once it has assigned relative address

to all identifiers requiring STATIC storage locations, this phase creates a matrix entry:

This allows code generation to generate the proper amount of storage. For each variable

that requires initialization, the storage allocation phase generates a matrix entry:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 20 of 32

This tells code generation to put into the proper storage location the initial values that the action

routines saved in the identifier table.

A similar scan of the identifier table is made for automatic storage and controlled storage. The

scan enters relative location for each entry. An “automatic” entry and a “controlled “entry are also

made in the matrix. Code generation use the relative location entry to generate the address part of

instructions. No storage is generated at compile time for automatic or controlled. However, the

matrix entry automatic does cause code to be generated that allocates this storage at execution

time, i.e., when the generated code is executed, it allocates automatic storage.

The literal table is similarly scanned and location are assigned to each literal, and a matrix entry is

made. Code generation generates storage for all literals in the static area and initializes the storage

with the values of the literals. Temporary storage is handled differently since each source

statement may reuse the temporary storage (intermediate matrix result area) of the previous

source statement. A computation is made of the temporary storage that is required for each source

statement. The statement required the greatest amount of temporary storage determines the

amount that will be required for the entire program. A matrix entry is made of the form This

enables the code generation phase to generate code to create the proper amount of storage.

Temporary storage is automatic since it is only referenced by the source program and only needed

while the source program is active.

4) Explain the concept of top down parser.

(Description - 2 Marks; 2 Marks for Description of any two type of top down parser)

Ans:

Top-down Parser

When the parser starts constructing the parse tree from the start symbol and then tries to

transform the start symbol to the input, it is called top-down parsing.

 Recursive descent parsing: It is a common form of top-down parsing. It is called recursive as

it uses recursive procedures to process the input. Recursive descent parsing suffers from

backtracking.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 21 of 32

 Backtracking: It means, if one derivation of a production fails, the syntax analyzer restarts the

process using different rules of same production. This technique may process the input string

more than once to determine the right production.

Top-down parsing technique parses the input, and starts constructing a parse tree from the root

node gradually moving down to the leaf nodes. The types of top-down parsing are depicted

below:

Recursive Descent Parsing

Recursive descent is a top-down parsing technique that constructs the parse tree from the top and

the input is read from left to right. It uses procedures for every terminal and non-terminal entity.

This parsing technique recursively parses the input to make a parse tree, which may or may not

require back-tracking. But the grammar associated with it (if not left factored) cannot avoid back-

tracking. A form of recursive-descent parsing that does not require any back-tracking is known

as predictive parsing.

This parsing technique is regarded recursive as it uses context-free grammar which is recursive in

nature.

Back-tracking

Top- down parsers start from the root node (start symbol) and match the input string against the

production rules to replace them (if matched). The following example of CFG:

S →rXd|rZd

X →oa|ea

Z →ai

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 22 of 32

For an input string: read, a top-down parser, will behave like this:

It will start with S from the production rules and will match its yield to the left-most letter of the

input, i.e. „r‟. The very production of S (S → rXd) matches with it. So the top-down parser

advances to the next input letter (i.e. „e‟). The parser tries to expand non-terminal „X‟ and checks

its production from the left (X → oa). It does not match with the next input symbol. So the top-

down parser backtracks to obtain the next production rule of X, (X → ea).

Now the parser matches all the input letters in an ordered manner. The string is accepted.

Predictive Parser

Predictive parser is a recursive descent parser, which has the capability to predict which

production is to be used to replace the input string. The predictive parser does not suffer from

backtracking.To accomplish its tasks; the predictive parser uses a look-ahead pointer, which

points to the next input symbols. To make the parser back-tracking free, the predictive parser puts

some constraints on the grammar and accepts only a class of grammar known as LL(k) grammar.

Predictive parsing uses a stack and a parsing table to parse the input and generate a parse tree.

Both the stack and the input contains an end symbol $to denote that the stack is empty and the

input is consumed. The parser refers to the parsing table to take any decision on the input and

stack element combination.

LL Parser

An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar but with

some restrictions to get the simplified version, in order to achieve easy implementation. LL

grammar can be implemented by means of both algorithms namely, recursive-descent or table-

driven. LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right,

the second L in LL(k) stands for left-most derivation and k itself represents the number of look

aheads. Generally k = 1, so LL(k) may also be written as LL(1).

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 23 of 32

B) Attempt any one: (6×1=6)

1. State and explain four basic task of macro processor.

(List - 2 Marks; Description of each functions -1 Mark each)

Ans:

The 4 basic task of Macro processor is as follows:-

1) Recognize the macro definitions.

2) Save the Macro definition.

3) Recognize the Macro calls.

4) Perform Macro Expansion.

1) Recognize the Macro definitions:- A microprocessor must recognize macro definitions

Identified by the MACRO and MEND pseudo-ops. When MACROS and MENDS are nested,

the macroprocessor must recognize the nesting and correctly match the last or outer MEND

with the first MACRO.

2) Save the Macro definition:- The processor must store the macro instruction definitions which

it will need for expanding macro calls.

3) Recognize the Macro calls:- The processor must recognize macro call that appear as operation

mnemonics. This suggests that macro names be handled as a type of opcode.

4) Perform Macro Expansion:- The processor must substitute for macro definition arguments the

corresponding arguments from a macro call, the resulting symbolic text is then substituted for

the macro call.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 24 of 32

2. Compare advantages and disadvantages at top down and bottom up parser.

(Any six points - 1 Mark each)

Ans:

OR

Top down parser

Advantages:-

1. It is easy to implement

2. It never wastes time on subtrees that cannot have an S at the root. Bottom up parsing does

this.

Disadvantages:-

1. It is not efficient parsing method as compare to bottom up parser

2. It cannot handle left recursion.

3. It is not applicable to large scale of grammar.

4. Wastes time on trees that don‟t match the input (compare the first word of the input with the

leftmost branch of the tree). Bottom-up parsing doesn‟t do this.

Bottom up parser

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 25 of 32

Advantages:-

1. It is efficient parsing method.

2. Left recursion framer is handled by bottom up parser.

3. It is applicable to large scale of grammar.

Disadvantages:-

1. It wastes time on subtrees that cannot have an S at the root.

2. Bottom-up parse postpones decisions about which production rule to apply until it has more

data than was available to top-down.

5. Attempt any two: (8×2=16)

1) Explain overlay structure in detail

(Explanation - 5 Marks, diagram/example - 3 Mark; any relevant diagram/example shall be

considered)

Ans:

Usually the subroutines of a program are needed at different times for example pass1and pass2

Of an assembler are mutually exclusive .by explicitly recognizing which subroutine call other

subroutine it is possible to produce an overlay structure that identifies mutually exclusive

subroutine . A program consisting of five subprogram (A, B, C, D, AND E) that require 100k

bytes of core. The arrows indicate that subprogram A only calls B, D and E subprogram B only

calls C and E subprogram only calls E and subprogram C and E do not call any other routines.

highlight the interdependencies between the procedures .note that procedures B and D are never

in use at the same time neither are C and E .if we load only those procedure that are actually to

be used at any particular time the amount of core needed is equal to longest path of overlay

structure .this happens to be 70K for the example in procedure A,B and C. a storage assignment

for each procedure consistent with the overlay structure.

A (20 K)

B (20 K) D (10 K)

C (30 K) E (20 K)

70K

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 26 of 32

In order for the overlay structure to work it is necessary for the module loader to load the various

procedure as they are needed .we will not go into their to load the various procedure as they are

needed .we will not g into their specific details but there are many binders capable of processing

and allocating an overlay structure .the portion of the loader that actually intercepts the calls and

load the necessary procedure is called the overlay supervisor or simply the flipper .this overall

scheme is called dynamic loading or load –on-call (LOCAL).

2) Write the algorithm for elimination and common sub-expression. Apply it for the following

Statements and show the designed matrix :

 B=A

 A=C*D*(D*C+B)

(Algorithm - 4 Marks; Optimization - 4 Marks)

Ans:

The elimination algorithm is as follows:-

i) Place the matrix in a form so that common sub expression can be recognized.

ii) Recognize two sub expressions as being equivalent.

iii) Eliminate one of them.

iv) After the rest of the matrix to reflect the elimination of this entry.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 27 of 32

3) Show the result of each pass by using Radix Sort :

424,887,807,709,882,616,573,413,679,180,975,264.

(Pass 1 - 2 Marks; Pass 2 - 2 Marks; Pass 3 with Output - 4 Marks)

Ans:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 28 of 32

6. Attempt any four of the following: (4×4=16)

1) Describe conditional macro expansion with suitable example.

(explanation -2 Marks , example - 2 Marks)

Ans:

Two important macro-processor pseudo-ops AIF and AGO permit conditional reordering of the

sequence of macro expansion. This allows conditional selection of the machine instructions that

appear in expansions of Macro call. Consider the following program. .

 Loop 1 A1, DATA 1

 A2, DATA 2

 A3, DATA 3

 .

 .

Loop 2 A1, DATA 3

 A2, DATA 2

 .

 .

 Loop 3 A1, DATA1

.

 .

 DATA 1 D C F „5‟

 DATA 2 D C F „10‟

 DATA 3 D C F „15‟

In the below example, the operands, labels and the number of instructions generated change in

each sequence. The program can written as follows:-

MACRO

& ARGO VARY & COUNT, & ARG1, &ARG2, &ARG3

& ARGO A 1, &ARG1

 AIF (& COUNT EQ1).FINI

 A 2,& ARG2

 AIF (& COUNT EQ2).FINI

 A 3,& ARG3 .FINI

MEND . . .

LOOP1 VARY 3, DATA1, DATA2, DATA3 loop 1 A1, DATA1

 A2, DATA2

A3, DATA3

LOOP2 VARY 1, DATA1 loop 2 A1, DATA3

 A2, DATA2

DATA 1 D C F „5‟

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 29 of 32

DATA 2 D C F „10‟

DATA 3 D C F „15‟

Labels starting with a period (.) such as .FINI are macro labels and do not appear in the output of

the macro processor . The statement AIF (& COUNT EQ1) .FINI direct the macro processor to

skip to the statement. Labeled .FINI if the parameter corresponding to & COUNT is a1; otherwise

the macro processor is to continue with the statement following the AIF pseudo-ops. AIF is

conditional branch pseudo ops it performs an arithmetic test and branches only if the tested

condition is true. AGO is an unconditional branch pseudo-ops or „Go to‟ statement. It specifies

label appearing on some other statement. AIF & AGO controls the sequence in which the macro

processor expands the statements in macro instructions.

2) How to improve the assembler design?

 (Description - 4 Marks)

Ans:

1. The rules of assembly language states that the symbol should be defined same where in the

program. Hence there may be same cases in which the reference is made to the symbol prior to

its definition end such reference is called forward reference.

2. Due to forward reference, assembler cannot assemble the instructions and such a problem is

called forward reference problem.

3. To solve the problem, assembler will make two phases (scan) once the I/P program.

4. The purpose of pass 1 is to define the symbols and the literals encounter in the program. The

purpose of pass 2 is to assemble the instruction and assemble the data.

3) What is the algorithm for direct linking loader?

(Algorithm - 4 Mark; any 1 algorithm shall be considered)

Ans:

Algorithm:-

Pass1: Allocate segment and defines symbols.

1. Start of pass 1

2. Initially program local address (PLA) is set to initial program load address (IPLA)

3. Read object card.

4. Write a copy of source card for pass2

5. Check card type

A. If TXT or RLS card, no processing from pass1. So read next card (go to step 3)

B. If an EDS card then, check type of external symbol

I. If SD then VALUE = PLA, SLENGTH= LENGTH

Ii. If ER then read next card go to step 3

Iii. If LD then VALUE = PLA+ADDR

6. If symbol is already in GEST

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 30 of 32

 A. If yes then ERR: duplicate use of START and ENTERY name

B. If no then the symbols and assigned values are stored in GEST

C. Write symbol name and value for load map.

7. Stop.

Pass 2:

STEP 1: START

STEP 2: PLA = IPLA

STEP 3: EXADDR = IPLA

STEP 4: READ CARD FROM FILE COPY

STEP 5: CHECK CARD TYPE

 IF CARD == ESD THEN

 CHECK ESD CARD TYPE

 IF LD THEN

 GO TO STEP 4

 ELSE IF SD THEN

 SLENGTH = LENGTH

 SET LESA (ID) = PLA)

 GOTO STEP 4

 ELSE

 SEARCH GEST FOR SYMBOL

 IF FOUND

 SET LESA (ID) = VALUE

 GOTO STEP NO 4;

 ELSE

 PRINT ERROR

 ELSE IF CARD ==TXT THEN

 MOV BC BYTES FROM CARD COLOUMN 17-72 TO LOCATION (PLA

+ADDR)

 GOTO STEP 4.

 ELSE IF CARD = RLD THEN

 GET VALUE FROM LESA(ID)

 IF FLAG == + THEN

 ADD VALUE TO CONTENTS OF LOCATION PLA + ADDRESS

 GO TO STEP 4.

 ELSE

 SUB VALUE TO CONTENTS OF LOCATION PLA + ADDRESS

 GO TO STEP 4.

 ELSE IF CARD == END THEN

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 31 of 32

 IF ADDR != NULL

 EXADDR = (PLA + ADDR)

 PLA = PLA+SLENGTH

 GO TO STEP 4

 ELSE

 PLA = PLA+SLENGTH

 GO TO STEP 4

 ELSE

 TRANSFER TO LOCATION EXADDR

STEP 6: STOP.

4) Explain how to reduce different process in compiler?

 (Description – 4 Marks)

Ans:

The syntax rules of the source language are contained in the reduction table. The syntax analysis

phase is an interpreter driven by the reductions.

The general form of rule or reduction is:

Label: old top of stack/ Action routines/ new top of stack/ Next reduction.

Example:

/ /***/

<idn> PROCEDURE/bgn_proc/S1 ****/4

<any><any><any>/ERROR/S2S1*/2

These three reductions will be the first three of the set defined for the example. The

interpretation is as follows:

1. Start by putting the first three uniform symbols from the UST onto the stack.

2. Test to see if top three elements are <idn>: PROCEDURE.

3. If they are, call the begin procedure (bgn_proc) action routine, delete the label and get the next

four uniform symbols from the UST onto the stack and go to reduction

4. If not, call action routine ERROR, remove the third uniform symbol from the stack get one

more from the UST, and go to reduction 2.

The reduction state that all programs must start with a „<label>: PROCEDURE... The syntax

phase deletes the label and the „:., gets four more tokens and interprets reduction 4, which will

start parsing of the body of the procedure.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 15 EXAMINATION
Model Answer

Subject Code: 17517 Subject Name: SYSTEM PROGRAMMING
__

 Page 32 of 32

If the first statement is not a <label>: PROCEDURE until a match is found or until all the

symbols in the UST have been tried.

5) What is purpose of ID number on ESD cards? Why it is not needed for locally defined

symbols?

(Purpose of ID - 2 Marks; reason - 2 Marks)

Ans:

Purpose of ID number on ESD:

Each SD and ER symbol is assigned a unique number by the assembler. This number is called as

symbol identifier or ID which is used in conjunction with RLD Card.

Reason behind Not needed for locally defined Symbol:

The external symbol is used for relocation or linking is identified on RLD cards by means of an

ID number rather than symbol name. The id number must match an SD or ER entry on ESD card.

Since an entry of locally declared symbols are already known hence the unlike the case with

GEST it is not necessary to search the LESA given an ID number the corresponding value is

written as LESA(ID) can be immediately obtained.

