# 22515

## 23124 3 Hours / 70 Marks

|          | <br> | <br> | <br> |  |
|----------|------|------|------|--|
| Seat No. |      |      |      |  |

### *Instructions* : (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

#### 1. Attempt any FIVE of the following :

- (a) Give any two applications of SCILAB software to solve numerical methods.
- (b) Give the concept of Gauss elimination method to solve linear equation.
- (c) Give the condition for Simpson's 1/3 rule.
- (d) State the concept of Bisection method.
- (e) Give the formula to solve second order differential equation using Runge-Kutta method.
- (f) Give any two applications of SCILAB software to solve integral equations.
- (g) Give the formula to solve 4<sup>th</sup> order differential equation using Taylor's series method.



Marks

#### 2. Attempt any THREE of the following :

- (a) Explain the use of SCILAB software for the solution of differential and integral equations.
- (b) Explain Gauss-Seidel iterative method in application to chemical engineering.
- (c) Using Simpson's 3/8 rule evaluate  $\int_{0}^{4} (1 e^{-2x}) dx$ .
- (d) Find the root of the equation  $x^3 + 2x^2 8 = 0$  using regula falsi method by two iterations only.

#### **3.** Attempt any THREE of the following :

- (a) Explain the use of SCILAB software for solution of algebraic equations.
- (b) Using Bisection method, find the root of  $x^3 x 1 = 0$  (Two iterations only).
- (c) Find the root of the equation  $xe^2 = \cos x$  by regula falsi method.
- (d) Find by Taylor's series method, the value of y at x = 0.1 from  $\frac{dy}{dx} = y^2 + x$  y(0) = 1.

#### 4. Attempt any THREE of the following :

(a) Evaluate the integral 
$$\int_{0}^{3} (5+3\cos x) dx$$
 by Trapezoidal rule.

(b) Using Euler's method find y (0.1) given that 
$$\frac{dy}{dx} = x + y$$
, y(0) = 1.

(c) Evaluate the integral 
$$\int_{0}^{2} (1 + x^4) dx$$
 by Simpson's  $\frac{1}{3}$  rule.

#### 22515

12

[3 of 4]

(d) Find approximate root of the equation  $3x - \cos x^{-1} = 0$  by using Newton Raphson method, correct to three decimal.

(e) Evaluate the integral 
$$\int_{2}^{6} \frac{dx}{x+3}$$
 using Simpson's  $\frac{3}{8}$  rule.

#### 5. Attempt any TWO of the following :

- (a) Describe the features of SCILAB software in details.
- (b) Solve by Gauss elimination method x + y + z = 6, 2x 3y + 3z = 5, 3x + 2y z = 4.
- (c) Evaluate the integral of the following tabular data with Simpson's 3/8 rule :

| x    | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
|------|-----|-----|-----|-----|-----|-----|-----|
| F(x) | 1   | 2.5 | 4.6 | 5.0 | 5.2 | 6.0 | 6.6 |

#### 6. Attempt any TWO of the following :

- (a) Find the smallest positive root of the equation  $\frac{1}{x} 15 = 0$ . Correct to three decimal places using Newton-Raphson method.
- (b) Determine the value of y when x = 0.1 given that y(0) = 1 and  $\frac{dy}{dx} = x^2 + y$  by using Euler's modified method.
- (c) Solve the equation  $\frac{dy}{dx} = \frac{1}{x+y}$ , y(0) = 1 for y(0.1) and y(0.2) using second order Runge-Kutta method.

22515

12