23124
 3 Hours / 70 Marks

Seat No. \square

Instructions: (1) All Questions are compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following :
(a) Give any two applications of SCILAB software to solve numerical methods.
(b) Give the concept of Gauss elimination method to solve linear equation.
(c) Give the condition for Simpson's $1 / 3$ rule.
(d) State the concept of Bisection method.
(e) Give the formula to solve second order differential equation using RungeKutta method.
(f) Give any two applications of SCILAB software to solve integral equations.
(g) Give the formula to solve $4^{\text {th }}$ order differential equation using Taylor's series method.
2. Attempt any THREE of the following :
(a) Explain the use of SCILAB software for the solution of differential and integral equations.
(b) Explain Gauss-Seidel iterative method in application to chemical engineering.
(c) Using Simpson's $3 / 8$ rule evaluate $\int_{0}^{4}\left(1-\mathrm{e}^{-2 x}\right) \mathrm{d} x$.
(d) Find the root of the equation $x^{3}+2 x^{2}-8=0$ using regula falsi method by two iterations only.
3. Attempt any THREE of the following :
(a) Explain the use of SCILAB software for solution of algebraic equations.
(b) Using Bisection method, find the root of $x^{3}-x-1=0$ (Two iterations only).
(c) Find the root of the equation $x \mathrm{e}^{2}=\cos x$ by regula falsi method.
(d) Find by Taylor's series method, the value of y at $x=0.1$ from $\frac{\mathrm{dy}}{\mathrm{d} x}=\mathrm{y}^{2}+x \quad \mathrm{y}(0)=1$.
4. Attempt any THREE of the following :
(a) Evaluate the integral $\int_{0}^{3}(5+3 \cos x) \mathrm{d} x$ by Trapezoidal rule.
(b) Using Euler's method find $\mathrm{y}(0.1)$ given that $\frac{\mathrm{dy}}{\mathrm{d} x}=x+\mathrm{y}, \mathrm{y}(0)=1$.
(c) Evaluate the integral $\int_{0}^{2}\left(1+x^{4}\right) \mathrm{d} x$ by Simpson's $\frac{1}{3}$ rule.
(d) Find approximate root of the equation $3 x-\cos x^{-1}=0$ by using Newton Raphson method, correct to three decimal.
(e) Evaluate the integral $\int_{2}^{6} \frac{\mathrm{~d} x}{x+3}$ using Simpson's $\frac{3}{8}$ rule.
5. Attempt any TWO of the following :
(a) Describe the features of SCILAB software in details.
(b) Solve by Gauss elimination method $x+y+z=6,2 x-3 y+3 z=5,3 x+2 y-z=4$.
(c) Evaluate the integral of the following tabular data with Simpson's $3 / 8$ rule :

x	0.0	1.0	2.0	3.0	4.0	5.0	6.0
$\mathrm{~F}(x)$	1	2.5	4.6	5.0	5.2	6.0	6.6

6. Attempt any TWO of the following :

(a) Find the smallest positive root of the equation $\frac{1}{x}-15=0$. Correct to three decimal places using Newton-Raphson method.
(b) Determine the value of y when $x=0.1$ given that $\mathrm{y}(0)=1$ and $\frac{\mathrm{dy}}{\mathrm{d} x}=x^{2}+\mathrm{y}$ by using Euler's modified method.
(c) Solve the equation $\frac{\mathrm{dy}}{\mathrm{d} x}=\frac{1}{x+y}, y(0)=1$ for $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ using second order Runge-Kutta method.

