22512

23124 3 Hours / 70 Marks

Seat No.				

Instructions : (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

 $5 \times 2 = 10$

1. Attempt any FIVE of the following :

- (a) Define rate of reaction & rate constant.
- (b) Define half life. Give its mathematical expression.
- (c) Define Space time and Space velocity.
- (d) List the types of reactor used in chemical industries.
- (e) Define Catalyst and Catalyst regeneration.
- (f) Define Fractional conversion.
- (g) Give the relation between conversion and concentration for constant density system.

2. Attempt any THREE of the following :

- (a) Differentiate between molecularity and order of reaction (four points).
- (b) The rate constant of zero order reaction is 0.2 (mol/l.h). What will be the initial concentration of the reactant if, after half an hour, concentration is 0.05 mol/lit ?
- (c) Define Space time and Space velocity. Give its unit.
- (d) Explain how feed should be admitted when PFRs are connected in parallel.

3. Attempt any THREE of the following : $3 \times 4 = 12$

- (a) Explain the different methods for preparation of catalyst.
- (b) State the general procedure for analysis of the complete rate equation by differential method.
- (c) With the help of example explain parallel and series reaction.
- (d) State advantages & disadvantages of Batch reactor.

4. Attempt any THREE of the following : $3 \times 4 = 12$

- (a) Derive the design equation for batch reactor.
- (b) Decomposition of a gas is second order when the initial concentration of gas is 5×10^{-4} mol/lit. It is 40% decomposed in 50 min. Calculate the value of rate constant.
- (c) Derive the integrated rate equation for zero order reaction with graphical representation.
- (d) Compare MFR and PFR (any four points).
- (e) Plug flow reactor are not put in series. Justify with example.

22512

5. Attempt any TWO of the following :

- (a) Derive the temperature dependency of rate constant from Collision theory.
- (b) Define catalyst deactivation. State its types and explain any two.
- (c) Show that the decomposition of N_2O_5 at 67 °C is first order reaction. Calculate the value of rate constant

Data.

Time (min)	0	1	2	3	4
C _{N2O5} , mole/lit	0.16	0.113	0.08	0.056	0.040

6. Attempt any TWO of the following :

 $2 \times 6 = 12$

 $2 \times 6 = 12$

(a) Concentration v/s time data for reaction is given below :

 $A \longrightarrow R$

$$B \longrightarrow S$$

Time (hr)	Concentration of A mole/lit	Concentration of R mole/lit			
0	0.100	0.00			
2	0.050	0.0050			

Time (hr)	Concentration of B mole/lit	Concentration of S mole/lit			
0	0.100	0.00			
2	0.075	0.025			

Calculate :

- (i) Which reaction proceeds at faster rate
- (ii) What are the rates of formation of R & S.

22512

[4 of 4]

(b) We are planning to operate a batch reactor to convert A into R. The stichometry is A \longrightarrow R and rate of reaction is given in the table. How long must we react each batch for the concentration to drop from $C_{AO} = 1.3$ mol/lit to $C_A = 0.3$ mol/lit.

C _A mole/lit	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.3	2.0
-rA mole/ <i>l</i> .	0.1	0.3	0.5	0.6	0.5	0.25	0.1	0.06	0.05	0.045
min										

(c) The laboratory measurement of the rate V/s conversion for reactant A are given below. Compare the volume of mixed flow reactor (CSTR) and a plug flow reactor required to achieve 60% conversion. The feed conditions are the same in both the cases and molar flow rate of A entering the reactor is 10 mol/s.

X _A	0	0.20	0.40	0.60	0.80
-rA mole/ <i>l</i> .s.	0.182	0.143	0.10	0.0667	0.0357