22421

23124
3 Hours / 70 Marks \square

Instructions: (1) All Questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.

1. Attempt any FIVE of the following :
(a) Construct OR gate using NAND gate.
(b) Define the term 'multiplexer'. State two examples of multiplexer.
(c) Implement T flip-flop using JK flip-flop. Write its truth table.
(d) Explain :
(i) Fan-in
(ii) Fan-out
with respect to logic families.
(e) Define:
(i) Address bus
(ii) Data bus
(f) Identify the addressing mode of the instruction :
(i) MOVX@Ro, A
(ii) CJNE A, \# data, rel
(g) Find the number of address lines required for
(i) 4 K RAM
(ii) 8 K ROM
2. Attempt any THREE of the following :
(a) State and explain De-Morgan's first theorem.
(b) Design full adder using K-map. Draw circuit diagram with truth table.
(c) Solve the following SOP expressions with the help of K-map :
(i) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,3,4,5,7)$
(ii) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(0,1,4,5,6,7)$
(d) Write any two laws of Boolean algebra. Justify with the help of truth table.
3. Attempt any THREE of the following :
(a) Explain any four addressing modes of 8051 microcontroller with one example each.
(b) Sketch diagram showing interfacing of two chips of RAM having size $2 \mathrm{~K} \times 8$ to 8051 microcontroller. Write its memory map.
(c) Minimize following Boolean equation using ' K ' map : $Y=A \bar{B} C+\bar{A} \bar{B} C+$ ABC and implement using basic gates.
(d) List any eight features of microcontroller 8051.
4. Attempt any THREE of the following :
(a) Explain different program development steps in assembly language programming.
(b) Compare between Harvard and Von-Neumann architecture. (any four points)
(c) Design 3-bit binary to gray code converter.
(d) Justify 'NOR gate is called as universal gate'. Sketch relevant diagram.
(e) Draw and explain the flag register of 8051 microcontroller.
5. Attempt any TWO of the following :
(a) Explain with neat diagram microcontroller based water level controller.
(b) Develop an ALP to generate square wave of 1 kHz at port pin 1.4. Draw flowchart for it.
(c) Draw architecture of 8051 microcontroller.
6. Attempt any TWO of the following : $2 \times 6=12$
(a) Explain power saving options :
(i) Idle mode
(ii) Power down mode
(b) Develop an ALP for interfacing of LEDs with port 1 of 8051. Draw interfacing for the same.
(c) Construct 3 bit asynchronous up-counter using flip-flop. Draw its timing diagram.
