23124
3 Hours / 70 Marks \square

Instructions: (1) All Questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

1. Attempt any FIVE of the following :
(a) List the inversions of double slider crank mechanism.
(b) Define kinematic link \& kinematic chain.
(c) State the inter-relation between
(i) Linear velocity and Angular velocity
(ii) Linear acceleration and Angular acceleration
(d) State the types of cam.
(e) Define pitch circle in cam.
(f) State the function of clutch.
(g) State the need for balancing of rotating elements of machine.
2. Attempt any THREE of the following :
(a) Explain with example completely constrained motion and successfully constrained motion.
(b) Differentiate between belt drive and gear drive.
(c) Cite the detailed classification of followers.
(d) Describe with sketch construction of compound gear train and state the expression for speed ratio.
3. Attempt any THREE of the following :
(a) Explain the mechanism of rotary IC engine.
(b) Draw the construction of Elliptical trammel.
(c) Explain the principle of working of disc brake.
(d) Distinguish between radial and cylindrical cam.
(e) Explain the method of balancing of single rotating mass by single mass rotating in same plane.
4. Attempt any TWO of the following :
(a) Explain with neat sketch working of quick return mechanism of shaper.
(b) The dimensions and configuration of the four bar mechanism shown in Fig. 1 are as follows :
$\mathrm{P}_{1} \mathrm{~A}=300 \mathrm{~mm}, \mathrm{P}_{2} \mathrm{~B}=360 \mathrm{~mm}, \mathrm{AB}=360 \mathrm{~mm} \& \mathrm{P}_{1} \mathrm{P}_{2}=600 \mathrm{~mm}$. The angle $\mathrm{AP}_{1} \mathrm{P}_{2}=60^{\circ}$. The crank $\mathrm{P}_{1} \mathrm{~A}$ has an angular velocity of $10 \mathrm{rad} / \mathrm{s} \&$ angular acceleration of $30 \mathrm{rad} / \mathrm{s}^{2}$ both clockwise. Determine the angular velocity \& angular acceleration of AB.

600 mm
Fig. 1
(c) A cam with minimum radius 50 mm rotating clockwise at uniform speed is required to give a knife edge follower the motion as described below :
(i) Outward stroke of 40 mm during 120° rotation of cam with SHM
(ii) Dwell for next 80°
(iii) Return stroke during next 90° with SHM
(iv) Dwell for remaining rotation of cam.

Draw the profile of cam when line of stroke of the follower is offset by 15 mm .

5. Attempt any TWO of the following :

(a) Explain the construction of epicyclic gear train \& state its four applications.
(b) The crank \& connecting rod of a reciprocating engine are $200 \mathrm{~mm} \& 700 \mathrm{~mm}$ respectively. The crank is rotating in clockwise direction at $120 \mathrm{rad} / \mathrm{s}$. Find velocity \& acceleration of slider using Klein's construction at the instant when crank is at 30° to inner dead centre.
(c) Explain with sketch construction of centrifugal governor \& its working.
6. Attempt any TWO of the following :
(a) In a flat belt drive the initial tension is 2000 N . The co-efficient of friction between the belt and pulley is 0.3 and angle of lap on smaller pulley is 150°. The smaller pulley has a radius 200 mm \& rotates at 500 rpm . Find the power in kW transmitted by the belt.
(b) Explain with sketch construction of single plate clutch.
(c) Draw Turning moment diagram for single cylinder 4-stroke petrol engine and explain it.

