# 22480

# 12425 3 Hours / 70 Marks

Seat No.

*Instructions* : (1) All Questions are *compulsory*.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

10

# 1. Attempt any FIVE of the following :

(a) If 
$$f(x, y) = 2x + 3y$$
 find  $\frac{\partial f}{\partial x}$ .

(b) If 
$$f(x, y) = \sin(x^2 + y^2)$$
 find  $\frac{\partial^2 f}{\partial x \cdot \partial y}$ .

(c) Find the Eigen value of matrix A = 
$$\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

- (d) Find rank of matrix  $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ .
- (e) Find value of 'p' if the vectors  $\overline{a} = 3\overline{i} 4\overline{j} + \overline{k} \& 2\overline{i} + 5\overline{j} + p\overline{k}$  are perpendicular to each other.
- (f) Find the projection of  $\overline{a} = 2\overline{i} + \overline{j} + \overline{k}$  on  $\overline{b} = \overline{i} + 3\overline{j} + \overline{k}$ .
- (g) Construct forward difference for the following data :

| <i>x</i> <sub>1</sub> | 0 | 5  | 10 | 15 | 20 | 25 |
|-----------------------|---|----|----|----|----|----|
| <b>f</b> ( <i>x</i> ) | 7 | 11 | 14 | 18 | 24 | 32 |



# 2. Attempt any THREE of the following :

- (a) Examine  $f(x, y) = x^3 y^2 3x$  for maximum & minimum value.
- (b) Find the angle between the vectors  $\overline{a} = 2\overline{i} + 3\overline{j} + \overline{k} \& \overline{b} = \overline{i} 3\overline{j} \overline{k}$ .
- (c) Examine the following linear system of equation for consistency & solve it if consistent :

$$4x - 2y + 6z = 8$$
,  $x + y - 3z = -1$ ,  $15x - 3y + 9z = 21$ 

(d) Reduce the following matrix to normal form and hence find its rank :

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

#### 3. Attempt any THREE of the following :

- (a) Find the maximum & minimum values of function 3x + 4y subject to constraint  $x^2 + y^2 = 100$ .
- (b) Find the inverse of following matrix by elementary transformation :

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

(c) Determine the value of  $\lambda$  for which the system of equations is consistent :

$$x + y + 4z = 1$$
,  $x + 2y - 2z = 1$ ,  $\lambda x + y + z = 1$ 

(d) If  $f(x, y) = x^3y + e^{xy^2}$  show that

$$\frac{\partial^2 \mathbf{f}}{\partial x \cdot \partial y} = \frac{\partial^2 \mathbf{f}}{\partial y \cdot \partial x}$$

### 4. Attempt any THREE of the following :

- (a) Find eigen values and eigen vectors of the matrix  $A = \begin{bmatrix} 10 & -9 \\ 6 & -5 \end{bmatrix}$ .
- (b) Show that the equations 2x + 6y = -11, 6x + 20y 6z = -3, 6y 18z = -1 are not consistent.
- (c) Find a vector of magnitude  $\sqrt{3}$  units & perpendicular to the vectors

$$\overline{a} = 2\overline{i} + \overline{j} - 3\overline{k} \& \overline{b} = \overline{i} - 2\overline{j} + \overline{k}$$

(d) If 
$$\overline{a} = 2\overline{i} + 3\overline{j} + 4\overline{k}$$
,  $\overline{b} = \overline{i} + 2\overline{j} - 3\overline{k}$  and  $\overline{c} = 3\overline{i} + 4\overline{j} - \overline{k}$ , then find  $\overline{a} \times (\overline{b} \times \overline{c})$ .

(e) Find the work done by the force  $\overline{F} = 6\overline{i} + 10\overline{j} - 3\overline{k}$  when its point of applications moves from (2, 3, 1) to (2, 4, 2).

# 5. Attempt any TWO of the following :

(a) Given :

| x                     | 5  | 10 | 15  | 20  |
|-----------------------|----|----|-----|-----|
| <b>f</b> ( <i>x</i> ) | 50 | 70 | 100 | 145 |

Estimate f(8) using Newton's forward difference interpolation formula.

(b) Find y'(0) & y''(0) from following data. Find 
$$\frac{dy}{dx}$$
,  $\frac{d^2y}{dx^2}$  at  $x = 0$ .

| x | 0 | 1 | 2  | 3 | 4 | 5 |
|---|---|---|----|---|---|---|
| У | 4 | 8 | 15 | 7 | 6 | 2 |

(c) Solve the following linear programming problem graphically to find optimal solution :

Maximize 
$$z = 2x + 5y$$
  
subject to  $x + 2y \le 16$ ,  
 $5x + 3y \le 45$   
 $x, y \ge 0$ 

12

# 6. Attempt any TWO of the following :

(a) Given the cube of integers in following data. Find the value of  $(12)^3$  using extrapolation :

| x | 2 | 5   | 8   | 11   |
|---|---|-----|-----|------|
| У | 8 | 125 | 512 | 1331 |

- (b) (i) Evaluate  $\int_{2}^{7} \frac{1}{x^2} dx$  using trapezoidal rule & by dividing the interval
  - [2, 7]. into five equal sub-interval.

(ii) Evaluate 
$$\int_{1}^{3} \frac{dx}{x}$$
 taking h = 0.5 by Simpson's one third rule.

(c) Solve the following linear programming problem using simplex method to find optimal solutions :

Maximize 
$$Z = 6x + 10y$$
  
subject to  $2x + y \le 104$   
 $x + 2y \le 76$   
 $x \ge 0, y \ge 0.$ 

# 22480