313325

12 03	42: H	5 Iours / 70 Marks Seat No.
Ι	nstri	actions – (1) All Questions are Compulsory.
		(2) Answer each next main Question on a new page.
		(3) Illustrate your answers with neat sketches wherever necessary.
		(4) Figures to the right indicate full marks.
		(5) Assume suitable data, if necessary.
		(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
		(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
		Marks
1.		Attempt any <u>FIVE</u> of the following: 10
	a)	Define the terms:
		i) Mesh
		ii) Node
	b)	State the reciprocity theorem.
	c)	Write the formula for following Z-parameters:
		i) Z ₁₁
		ii) Z ₂₁
	d)	What is pass band and stop band of filter?
	e)	Draw the phasor diagram for purely inductive circuit.
	f)	Define resonance in series RLC circuit. State the resonant frequency of series resonant circuit.
	g)	Draw well labeled diagram showing variation of impedance in

parallel resonant circuit.

313325

2. Attempt any THREE of the following:

- a) Explain with suitable example, procedure to convert voltage source into its equivalent current source.
- b) State Superposition Theorem. List the drawbacks of superpositions theorem. (Any two)
- c) Give the comparison in between T and π attenuators. (Any four points)
- d) A coil consists of 0.08 H inductance with resistance of 40Ω connected to 230 V, 50 Hz supply. Find:
 - i) Impedance
 - ii) Reactance
 - iii) Current
 - iv) Power factor

3. Attempt any <u>THREE</u> of the following:

- a) Find the current in 6Ω resistor in the circuit shown in the
 - Fig. No. 1.

Fig. No. 1

b) Obtain Thevenin's equivalent circuit for the network shown in the Fig. No. 2.

Fig. No. 2

12

- c) For a 1Φ series RC circuit:
 - i) Draw the circuit diagram.
 - ii) Write voltage and current equation.
 - iii) Draw impedance triangle
 - iv) Draw phasor diagram.
- d) Explain the variation of current and power factor in R-L-C series resonant circuit.

4. Attempt any THREE of the following:

a) Determine the equivalent resistance between terminals A and B for a circuit shown in Fig. No. 3.

Fig. No. 3

b) Calculate the current flowing through 5Ω resistor using Norton's theorem for the circuit shown in the Fig. No. 4.

Fig. No. 4

12

c) Find short circuit admittance (Y) parameters for the network shown in the Fig. No. 5.

Fig. No. 5

d) A coil of resistance 10Ω and inductance 0.1 H is connected in series with capacitor of $150\,\mu\text{F}$ across 200 V, 50 Hz supply. Calculate:

Inductive reactance (X_L) , Capacitive reactance (X_C) , Impedance (Z) and Current (I).

- e) A R L C series circuit with resistance of 20Ω , inductance of 0.25 H and capacitance of 100μ F is supplied with 250 V, 50 Hz supply. Determine:
 - i) Resonant Frequency
 - ii) Current at resonance
 - iii) Power factor
 - iv) Quality factor

5. Attempt any TWO of the following:

12

a) Use nodal analysis to calculate the power dissipation across 4Ω resistor for the circuit shown in the Fig. No. 6.

Fig. No. 6

b) Determine the value of load resistance R_L when load resistance draws maximum power for the circuit shown in Fig. No. 7.
Also find the value of maximum power delivered to it.

Fig. No. 7

c) A coil with an inductance of 0.01 H and a resistance of 2Ω is connected in parallel with capacitor of $714 \mu\text{F}$. Above circuit produces resonance when connected across 230 V, 50 Hz supply. Determine total current and current in each branch.

6. Attempt any <u>TWO</u> of the following:

a) Use superposition theorem to find current through 4Ω resistor for the circuit shown in Fig. No. 8.

Fig. No. 8

b) Find ABCD parameters for the network shown in the Fig. No. 9. Comment on reciprocity and symmetry of the network.

Fig. No. 9

12

Marks

- c) Compare series and parallel resonant circuit on the basis of:
 - i) Resonant Frequency
 - ii) Impedance at resonance
 - iii) Current at resonance
 - iv) Magnification
 - v) Power factor
 - vi) Application