313307

12425 3 Hours / 70 Marks

i			_	-	_	
Seat No.						

Instructions :	(1)	All Questions are <i>compulsory</i> .
----------------	-----	---------------------------------------

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following :

(a) Calculate Q_3 for the given distribution :

20, 28, 31, 18, 19, 17, 32, 33, 22, 21

- (b) Find H.M. of the daily income of 5 families as given below :90, 100, 150, 120, 200
- (c) If standard deviation of data is 8.5, mean of data is 20.6 and mode of data is 18.52, find the Karl Pearson's coefficient of Skewness.
- (d) Find correlation coefficient between X and Y given that n = 25, $\Sigma x = 75$, $\Sigma y = 100$, $\Sigma x^2 = 250$, $\Sigma y^2 = 500$, $\Sigma xy = 325$.
- (e) A bag contains 30 balls numbered 1 to 30. One ball is drawn at random. Find the probability that the number on the ball drawn will be a multiple of 5 or 7.
- (f) Form the backward difference table of $f(x) = x^3 3x^2 + 5x + 7$ for the values of 0, 2, 4, 6, 8.
- (g) In a sample of 500 people from Andhra Pradesh, 280 are found to be rice eaters and the rest wheat eaters. Can we assume that both the food articles are equally popular ?

Marks

2. Attempt any THREE of the following :

(a) Calculate the median from the following data :

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70
No. of Students	4	4	8	10	12	8	4

(b) Find measure of skewness from the following table giving the wages of 230 persons :

Wages in ₹	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150
No. of persons	12	18	35	42	50	45	20	8

(c) Calculate Bouley's coefficient of skewness of the following data :

C.I.	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	2	8	10	2	13	4

(d) Find the mode of following data by graphical method (Histogram) :

Age	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
Frequency	16	21	20	28	10	3	1	1

3. Attempt any THREE of the following :

(a) Calculate the Spearman's rank correlation coefficient of the data :

x	10	6	9	12	8
У	8	7	5	6	9

(b) Calculate the measure of Kurtosis based on the moment for the following data :

x	2.0	2.5	3.0	3.5	4.0	4.5	5.0
f	4	36	60	90	70	40	10

(c) Fit a straight line of the form y = ax + b to the following data, by using the method of least squares :

x	0	1	2	3	4	5	6	7
у	-5	-3	-1	1	3	5	7	9

(d) Calculate Karl Pearson's coefficient of correlation for the following data :

x	5	9	13	17	21
У	12	20	25	33	35

313307

4. Attempt any THREE of the following :

(a) Find the regression lines for the following :

x	2	4	6	8	10
У	11	8	9	7	5

(b) Two ladies were asked to rank lipsticks from 7 known companies. The ranks given by them are as follows :

Lipsticks Companies	А	В	C	D	Е	F	G
Deepti (x)	2	1	4	3	5	7	6
Nancy (y)	1	3	2	4	5	6	7

Compute the Spearman's rank correlation coefficient.

- (c) A card is drawn from a pack of 52 cards, find the probability that a card is a diamond or a face card.
- (d) A bag contains 3 red and 7 black balls. Two balls are drawn at random without replacement. If the second ball is red, what is the probability that the first ball is also red ?
- (e) A man is known to speak the truth 2 out of 3 times the throws a die and reports that the number obtained is a four. Find the probability that the number obtained is actually a four.

5. Attempt any TWO of the following :

(a) (i) Using Lagrange's interpolation formula, find the value of y when x = 10, from the following table :

x	5	6	9	11	
У	12	13	14	16	

- (ii) Given f(1) = 6, f(2) = 16 and f(3) = 32. Estimate f(2.5) using Lagrange's interpolation formula.
- (b) (i) Construct the forward difference table for the following data :

x	0	1 2		3
f (<i>x</i>)	3	6	11	18

Hence, write down the value of $\Delta f(0)$ and $\Delta f(2)$.

(ii) Prove that
$$\left(\frac{\Delta^2}{E}\right) x^3 = 6x$$

Р.Т.О.

[4 of 4]

(c) (i) If f(1.15) = 1.0723, f(1.20) = 1.0954, f(1.25) = 1.1180 and f(1.30) = 1.1401

Find f(1.28) by using Newton's Backward difference Interpolation formula.

- x
 8
 10
 12
 14
 16
 18

 y
 10
 19
 32.5
 54
 89.5
 15.4
- (ii) Compute y(19) from the following data :

6. Attempt any TWO of the following :

- (a) (i) A machine produced 20 defective items in batch of 400. After overhauling, it produced 10 defective items in a batch of 300. Has the machine improved ? Use 1% level of significance.
 - (ii) A dice was thrown 1500 times and the number 4 was obtained 290 times. Can the dice be considered fair at 0.01 level of significance ?
- (b) A survey of 320 families with 5 children each revealed the following distribution :

No. of Boys	5	4	3	2	1	0
No. of Girls	0	1	2	3	4	5
No. of Families	14	56	110	88	40	12

Is this data consistent with the hypothesis that male and female births are equally probable ?

 $(\chi^2 \text{ for 5 d.o.f. at 5\% Los} = 11.07)$

(c) The nine items of a sample had the following values :

45, 47, 50, 52, 48, 47, 49, 53, 51

Does the mean of the nine items differ significantly from the assumed population mean of 47.5 ?

[t for 8 d.f. at 5% Los = 2.31]

313307