313303

12425

03 Hours / 70 Marks

Seat No.

Instructions –

- (1) All Questions are Compulsory.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answer with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any <u>FIVE</u> of the following:

10

- a) Give advantages of BCD codes (Any two).
- b) List OR laws of boolean algebra.
- c) Convert following equation into their standard / canonical form $Y = A\overline{B} + BC + \overline{A}C$.
- d) List modes of operation of shift register.
- e) Give two applications of A/D converter.
- f) Give any two applications of demultiplexer.
- g) Simplify following expression with boolean laws,

$$Y = (A + B) (A + C).$$

313303 [2]

515.	303	[~]	Marks
2.		Attempt any THREE of the following:	12
	a)	State and prove De-Morgan's theorem with logic diagram.	
	b)	Perform subtraction using 2's complement method $(85)_{10} - (98)_{10}$.	
	c)	Draw block diagram of half adder. Write truth table and draw logic diagram.	
	d)	Draw and explain 4 bit ring counter using D flip-flop.	
3.		Attempt any THREE of the following:	12
	a)	Draw and explain working of clocked S-R flip flop using NAND gate.	
	b)	Implement basic gates using NAND gate.	
	c)	Draw and explain 4:2 priority encoder with block diagram, truth table and logic diagram.	
	d)	Compare static RAM and Dynamic RAM (Write any four points).	
4.		Attempt any THREE of the following:	12
	a)	Realize the following equations using NAND gate only.	
		i) Y = AB + CD	
		ii) $Y = A + B$.	
	b)	Calculate the analog output for 4 bit weighted resistive type DAC for following inputs	
		i) 1011	
		ii) 1010.	
	c)	Design 32:1 MUX using 8:1 MUX.	
	d)	Draw and explain working of SAR ADC.	
	e)	Draw and explain operation of 4:1 MUX.	

313303 [3]

5.		Attempt any <u>TWO</u> of the following:	12
	a)	Explain BCD to 7 segment decoder using truth table, circuit diagram and realize code for 'a' and 'e' using K map.	
	b)	Design mod IO asynchronous UP counter with its truth table and timing diagram.	
	c)	Draw and explain operation of 4-bit SISO shift register using D flip-flop, with block diagram, truth table and waveform.	
6.		Attempt any <u>TWO</u> of the following:	12
	a)	Draw and explain 4 bit twisted ring counter using J-K flip-flop with circuit diagram and truth table.	
	b)	Explain working of 3 bit R-2R ladder DAC with circuit diagram.	
	c)	Do following conversions –	
		i) $(A26.48)_{16} \rightarrow (?)_{10}$	
		ii) $(172.95)_{10} \rightarrow (?)_8$	
		iii) $(0101 \ 0011)_{BCD} \rightarrow (?)_2$	

Marks