11819 3 Hours / 70 Marks

Seat No.

Instructions:

- (1) All Questions are *compulsory*.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE:

 $5 \times 2 = 10$

- (a) List different kinematic chains.
- (b) Define term 'Mechanism'.
- (c) State the relationship between linear and angular velocity.
- (d) Enlist different followers used in cam-follower mechanism.
- (e) Define 'Lift' of cam.
- (f) Classify Brakes.
- (g) State the significance of 'Co-efficient of fluctuation of speed'.

2. Attempt any THREE:

 $3 \times 4 = 12$

(a) Explain in brief the term 'Inversion of Mechanism' with suitable example.

[1 of 4]

P.T.O.

22344 [2 of 4]

- (b) Compare between Flat and 'V' belts.
- (c) Classify 'Cams'. State their applications.
- (d) Explain the procedure of 'Selection of Belt' for given application.

3. Attempt any THREE:

 $3 \times 4 = 12$

- (a) Explain 'Scotch-Yoke' Mechanism with neat sketch.
- (b) Draw the constructional feature of 'Centrifugal Clutch'.
- (c) Explain in brief the construction of 'Rotary Engine' with neat sketch.
- (d) Distinguish between uniform velocity motion and simple harmonic motion of follower.
- (e) Explain the procedure of balancing of several masses revolving in same plane.

4. Attempt any TWO:

 $2 \times 6 = 12$

- (a) Draw 'Withworth's Quick Return Mechanism'. Explain its working.
- (b) The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 rpm. The crank is 150 mm and the connecting rod is 600 mm long. Determine:
 - (i) Linear velocity and acceleration of midpoint of connecting rod,
 - (ii) Angular velocity and angular acceleration of connecting rod at a crank angle of 45° from inner dead centre position.

22344 [3 of 4]

- (c) A cam with a minimum radius of 50 mm, rotating clockwise at a uniform speed is required to give motion to knife edge follower as below:
 - (i) To move outward through 40 mm during 100° rotation of cam.
 - (ii) To dwell for next 80°.
 - (iii) To return to its starting position during next 90°.
 - (iv) To dwell for the rest period of a revolution.

Draw the profile of cam when the line of stroke of follower is offset by 15 mm.

5. Attempt any TWO:

 $2 \times 6 = 12$

- (a) Calculate the power transmitted by a belt running over a pulley of 600 mm diameter at 200 rpm. The co-efficient of friction between belt and pulley is 0.25, angle of Lap is 160° and Maximum tension in the belt is 2500 N.
- (b) The crank and connecting rod of reciprocating engine are 50 mm and 175 mm respectively. The crank is rotating in clockwise at 120 rad/s. Find with the help of Klein's construction
 - (i) Velocity and acceleration of piston
 - (ii) Angular velocity and angular acceleration of connecting rod at the instant when the crank is at 30° to inner dead centre.
- (c) Draw neat sketch of 'Proell governer'. Explain its working.

6. Attempt any TWO:

 $2 \times 6 = 12$

(a) Enlist the factors to be considered while selecting 'Chain drives'. List different types of chain drives along with their industrial applications.

P.T.O.

22344 [4 of 4]

- (b) The simple band brake is operated by a lever of length 500 mm. The brake drum has a diameter of 500 mm and the brake band embraces 5/8 of the circumference. One end of the band is attached to the fulcrum of the lever while other end is attached to a pin on the lever 100 mm from the fulcrum. If the effort applied to the end of lever is 2 kN and co-efficient of friction is 0.25. Calculate the maximum bending torque on the drum.
- (c) Draw turning moment diagram for single cylinder 4-stroke diesel engine with explanation.