

17470

11819 3 Hours / 100 Marks Seat No. Instructions : (1) All questions are compulsory.

- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Abbreviations used, convey usual meaning.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

Marks

 $(5 \times 4 = 20)$

1. Answer any five :

- a) i) Define :
 - 1) density
 - 2) specific gravity
 - ii) A liquid has density of 1.2 g/l at 30°C. Find its weight in kg/10 l.
- b) Define critical Reynold's number and explain the significance of Reynold's number.
- c) Explain as to why heat is considered as a form of energy.
- d) Explain with examples, 'forced convection'.
- e) Describe the process of 'Eddy diffusion'.
- f) Define humidification and explain the process of humidification.
- g) Explain the terms :
 - i) ultra-filtration
 - ii) micro filtration.

2. Answer any two :

- a) Describe Reynold's experiment, write its mathematical expression and derive its units.
- b) i) Explain the terms :
 - i) Sensible heat
 - ii) Latent heat.
 - ii) Draw a representative diagram and describe heat flow, through a thick cylindrical pipe.
- c) i) State distinguishing features between 'absorption and adsorption'.
 - ii) Explain 'theory of extraction' and state its two 'applications' in textile industry.

(2×8=16)

17470			
		Marks	
3.	Answer any two :	(2×8=16)	
	a) Draw a neat sketch of centrifugal pump and explain its working.		
	b) i) Define :	2	
	 Convection Radiation. 		
	ii) Explain their 'applications' in textile industry.	6	
	c) i) Explain 'principle' of 'reverse osmosis'.		
	ii) Explain 'factors' on which, rate of filtration depend.		
4.	Answer any two :	(2×8=16)	
	a) i) Define and give two examples each, of		
	1) real fluid		
	2) ideal fluid ii) Evaloin and graphically represent :		
	ii) Explain and graphically represent :1) Dilatant flow		
	2) Pseudo plastic.		
	b) i) Define 'heat transfer'.	1	
	ii) Define 'conduction'. State 'applications' of conduction, specific to textile indu	•	
	iii) State and explain 'Fourier's law' of heat conduction.	4	
	c) i) Describe 'capillary theory' of 'drying'.ii) Explain use of 'tumbler drier' in textiles.		
_			
5.	Answer any two :	(2×8=16)	
	a) i) Define 'surface tension'. Write its 'unit' and 'dimension'.ii) Define 'viscosity'. Write its unit. State effect of 'temperature' on viscosity.	2 2	
	iii) State and explain 'Newton's law of viscosity'.	4	
	b) i) Explain 'working principle' of a 'venturimeter'.	3	
	ii) Write stepwise 'procedure' of its 'use'.	5	
	c) i) State 'factors' on which, 'rate of drying' depend.	2	
	ii) Enumerate 'applications' of drying techniques, specific to textile industry.iii) Define :	2 4	
	1) Wet-and dry-bulb temperature.	-	
	2) Relative-and absolute humidity.		
6.	Answer any four :	(4×4=16)	
	a) i) Explain 'purpose' of 'pipe fittings'.	(
	ii) Name 'types' of pipe fittings.		
	b) i) Draw a labelled diagram of an 'orifice meter'.	3	
	ii) Where is orifice meter, 'used'?	1	
	c) State and explain 'Newton's law of cooling'.		
	d) State basic 'laws of radiation'.	4	
	e) i) Define 'crystalisation'.ii) Explain specific instances where crystalisation is used in textile industry.	1 3	
	f) Describe 'membrane separation' technique.	5	
	2) 2 contect memorane separation commune.		