17446

11819 3 Hours / 100 Marks

Instructions : (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Figures to the right indicate full marks.
- (4) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (5) Abbreviations used convey usual meaning.

Marks

1. Answer any FIVE : $5 \times 4 = 20$

- (a) Define elastomers. State general characteristics of elastomers.
- (b) Describe 'Step polymerisation'.
- (c) Distinguish between emulsion polymerisation and suspension polymerisation.
- (d) Explain Bulk polymerisation technique.
- (e) Explain use of ebulliometry to determine \overline{M}_n (Average molecular weight) of polymers.
- (f) Describe method of sedimentation to determine average molecular weight of polymer.
- (g) Under which conditions, does PVC degrade ? Name type of its degradation.Name stabilisers used to control degradation of PVC.

2.	Answer any TWO :				
	(a)	Explain tonic polymerization with suitable reaction. Write temperature condition and catalyst used in ionic reactions.			
	(b)	In relation to emulsion polymerisation :			
		(i)	Define :	2	
			(1) Micelle		
			(2) CMC		
		(ii)	Explain necessity to use preservatives. Name two preservatives used.	3	
		(iii)	Explain with two examples, role of protective colloids.	3	
	(c)	(i)	What is glass transition temperature ? List the factors influencing the glass transition temperature.		
		(ii)	State the importance of glass transition temperature.		
3.	Answer any TWO : $2 \times 8 =$			16	
	(a)	(i)	Define :	2	
			(1) Homopolymer		

(2) Co-polymer

(ii) Explain the terms :

- (1) Block co-polymer
- Random co-polymer (2)

Represent them schematically.

17446

$2 \times 8 = 16$

6

17446

[**3** of **4**]

- (b) Define chain transfer reaction. Explain with reactions, ways in which chain transfer of growing polymer chain can occur with
 - (i) Monomer
 - (ii) Initiator
 - (iii) Solvent
- (c) (i) A polymer has two fractions in 1 : 2 weight proportions and $M_1 = 10000$ and $M_2 = 40000$. Find \overline{M}_W .
 - (ii) Define \overline{M}_n . Write mathematical expression for it. Which of the two \overline{M}_n , \overline{M}_W ; is higher ? Name a method to determine \overline{M}_W .

4. Answer any TWO :

- (a) Explain initiation, propagation and termination with respect to free radical polymerization technique.
- (b) Explain effect of
 - (i) Molecular weight of a polymer,
 - (ii) Plasticiser on T_g of the polymer.
- (c) (i) Describe with an example, mechanical degradation of a polymer.
 - (ii) How it can be prevented ?

P.T.O.

$2 \times 8 = 16$

17446	

$2 \times 8 = 16$ 5. Answer any TWO : (i) Explain general characteristics of thermosetting plastics. Name two such (a) plastics. (ii) Define and give two examples each of : (1) Commodity plastics (2) **Engineering plastics** Distinguish between : (b) Addition - and condensation - polymers (polymerisation) - Give two examples each of such polymers.

- (c) Draw a labelled diagram of an Ostwald's Viscometer. State precautions (i) to be taken in its use.
 - How average molecular weight is determined of a polymer by end group (ii) analysis?

6. Answer any FOUR :

- Define a fibre. State property requirements for a fibre. Name me synthetic (a) and one natural fibre.
- (b) Explain co-ordination polymerisation.
- Write stepwise procedure to conduct solution polymerisation of styrene. (c)
- (d) State merits of solution polymerisation over mass-polymerisation.
- (e) Explain cryoscopy method for determination of average molecular weight of a polymer.
- (f) Explain ultracentrifugation method for determination of average molecular weight of polymer.

 $4 \times 4 = 16$

4

4