

WINTER-2018 EXAMINATION

Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

Subject Code:

17543

- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical spelling errors should not be given more Importance Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub	Answer	Marking
	Q. N.		Scheme
1.	Α	Attempt any <u>THREE</u>	12
		List one four Donds present in Dismotorials	
	a	List any four bonds present in biomaterials.	
		Alls: Bonds present in Diamaterials:	
		1 Vander Waals	04 M
		1. Valuel Waals	U4 IVI
		2. Hydrogen 2. Motallia	
		J. Indiana	
		4. Iollic 5. Covalent	
	h	J. Covariant	
	D	Ans.	
		Properties of alumina:	
		1 It is insoluble in water & slightly soluble in strong alkali and acid	
		2 Chemically stable and excellent corrosion resistant	
		3 High melting point	04 M
		4. Highest hardness.	0.1.1
		5. Highest mechanical strength	
		6. Good biocompatibility.	
		7. High wear resistance & reasonable strength.	
	с	List different types of dialyzers & draw any one.	
		Ans:	
		Types of dialyzers	
		1. Flat plate	02 M
		2. Coil-type	
		3. Hollow fiber	

	Blood Flat plate Mesh Cross section Twin coil Blood Gialysis Blood Hollow fiber Blood Fig: Types of dialyzers	02
d	List the materials used for Filling & Restoration.	
u	Ans: Dental filling material: 1. Gold foil.	
	2. Platinum.	
	3. Aluminum.	02 M
	4. Lead and tungsten.	
	5. Tin and iron.	
	Dental restoration material:	
	1. Amalgam: is a metallic filling material composed from a mixture of mercury	
	(from 43% to 54%) and powdered alloy made mostly of silver, tin, zinc and	
	copper, commonly called the amalgam alloy	02 M
	2. Composite resin (also called white fillings)	-
	3. Glass Ionomer Cement	
	4. Resin modified Glass-Ionomer Cement (RMGIC)	
В	Attempt any ONE	06
a	Describe the testing and evaluation procedure for dental implants.	
	Ans:	
	The testing and evaluation of dental implants involves several stages.	
	1. First, materials are tested for toxicity by implantation subcutaneously in rats for	
	periods of time up to 30 days and through tissue culture tests.	
	2. The second step is to test the devices in an animal model. Of all animals, the	
	baboon is considered the most preferred experimental animal in dental-implant	
	studies, since its physiology and immunological responses are very similar to	06 M
	those of humans.	
	3. In general, the clinical condition of dental implants is evaluated by using	
	radiographs, gingival tone, pocket depth and mobility. A stereo-photogrammetric	
	method of measuring the extent of tissue changes and mobility of Subperiosteal	
	implants technique utilizes stereo photographs to measure quantitatively, the	
	extent of tissue swelling or resorption, as well as, migration of dental implants to	
	an accuracy of 16 µm.	
b	Describe the structure of typical bone with its diagram.	
	Ans:	
	Structure of typical bone:	
	Long bones are consists of two major regions: compact or cortical bone and	
	cancellous or trabecular bone. The location of these bone types in a femur shown in fig.	

		Cortical or compact bone is a dense material with a specific gravity of about 2. The external surface of bone is generally smooth and is called the periosteum. The interior surface is called Endosteal surface, which is roughened. Cancellous bone, which exists in epiphysial and metaphysical regions of long bone, is also called spongy or trabecular bone because it is composed of short struts of bone material called trabeculae. The connected trabeculae give cancellous bone a spongy appearance and a vast surface area. $I = \frac{Epiphysial}{region} + \frac{Epiphysia}{region} + \frac{Epiphysial}{region} + \frac{Epiphysia}{region} + E$	03 M 03 M
		Fig: Structure of typical bone	
2.		Attempt any <u>FOUR</u>	16
	a	Describe contact angle technique used in surface analysis. Ans: Description of contact angle technique: When a liquid drop is placed onto a solid surface or another liquid surface two things may happen. The liquid may sit on the surface in the form of a droplet or it may spread out over the entire surface. Which event occurs depend on the interfacial free energies of the two substances. At equilibrium contact angle or Young-Dupree equation describes: $\gamma s/g = \gamma s/l + \gamma l/g \cos \theta$, where $\gamma s/g$, $\gamma s/l$ and $\gamma l/g$ are the interfacial free energy between the solid and gas; solid and liquid, liquid and gas respectively and θ the contact angle.	04 M
	b	Draw neat labelled stress-strain curve and explain it. Ans: Stress-strain curve: In Stress-Strain curve x-axis represent strain and y-axis represent stress. The stress is force per unit cross-sectional area and strain is change in length per original length. The ability of material to withstand static load can be determined by a standard tensile, compressive and shear tests. From a load-displacement curve a stress-strain diagram can be constructed by knowing cross-sectional area and length of rod. The stress-strain curve of a solid can be demarcated by the yield point or stress (YS) into elastic and plastic regions. In the elastic region, the strain increases in direct proportion to the applied stress whereas in the plastic region strain changes are no longer proportional to the applied stress. Further when the applied stress is removed, the material will not return to its original shape but will be permanently deformed. This phenomenon is termed as plastic deformation. The peak stress in fig. is often followed by an apparent decrease until a point is reached where the material ruptures. The peak stress is called as the tensile or ultimate tensile strength (TS or UTS) and the final stress	02 M

e

Cobalt: It is an essential trace element and the function is confined to its role in vitamin B12. A daily intake of 3µm of vitamin B12 is adequate. Free cobalt has no obvious function and there is no apparent mechanism for controlling its uptake into or loss from the body. Eighty percent of dietary intake is unabsorbed and excreted in the faces unabsorbed and urinary excretion of the remainder is relatively fast. In cases of raised dietary cobalt levels it is possible for the cobalt absorbed to be located in the muscles of 01 M the heart leading in some cases to cardiomyopathy. It is not a particularly toxic metal and although there are theoretical and experimental grounds for assuming that cobalt based alloys could be quite toxic upon implantation, there is little evidence that they have any adverse effects on implantation in humans. Indeed these alloys offer very good biocompatibility properties, largely on account of the excellent corrosion resistance. **Chromium:** Like many of the transition metals, chromium is both an essential dietary element that is required in low concentrations (blood level average 2.8µg/IOO g) and also a toxic substance if present in the raised amounts. Chromium compounds are only poorly absorbed after oral ingestion and storage of chromium (III) is largely confined to the reticuloendothelial systems. The hexavalent chromium ion is able to pass the plasma 01 M membrane freely, both in and out of the cell and the reduction takes place mainly in the mitochondria. The mechanism of chromium toxicity is not entirely clear but it has been suggested that the in vivo reduction from hexavalent to trivalent states may be important. Molybdenum: It is an essential dietary element and has its highest concentration in the liver at 1 to 3 ppm. It is necessary for the function of certain enzymes. There are three principal molybdenum containing metallo-enzymes: xanthine oxidase, aldehyde oxidase and sulfite oxidase. In contrast to many metals, molybdenum is quite readily absorbed from the intestinal tract, excretion largely being via the kidneys. Molybdenum is toxic in 01 M large doses; the symptoms of toxicity include diarrhea, coma and cardiac failure, and inhibition of activity of ceruloplasmin, cytochrome oxidase, glutaminase, and choline esterase and sulfite oxidase. High levels of molybdenum can also interfere with calcium and phosphorus metabolism. Nickel: It is an essential element of limited biological activity with a wide-ranging distribution. In humans, it has a level of approximately 10 mg in adult human tissues. A normal blood level of nickel is around 5mg/l. In human inhalation of nickel may lead to renal effects but observation of toxicity are largely confined to carcinogenesis and hypersensitivity. It is sufficient to note here that nickel carcinogenesis in experimental animal is well established. While these facts are of some concern, their reference to implantation is not yet clear. Contact dermatitis for nickel and nickel alloys has been well established. **Manganese:** It is at a level of 12 to 20 mg in a 70 kg man, and the normal blood level is 7.0 to 28.0µg/ml. A higher concentration of manganese occurs in pituitary gland, pancreas, liver, kidney and bones, and accumulation occurs in hair. Within the cell manganese is associated with the mitochondria and it is largely protein bound in plasma. It is a co-factor for a number of enzymes; among them are carboxylases and phosphatases. Manganese is one of the least toxic trace elements. The divalent form is supposed to be more toxic than trivalent form. It has been shown that injected manganese elimination from the human body can be described by a curve with two exponents, the more rapid pathway having a half-life of 4 days while 70% of the

manganese had an average half-life of 39 days. **Titanium:** Unlike nickel, titanium has a very good reputation for biocompatibility.
Titanium and its compounds are not carcinogenic in experimental animals or in humans.

Describe intrinsic pathway of formation of blood	d clot.
Ans:	

		Intrinsic pathwa	ay of formatio	n of blood	clot:					
		The	contact active	ation pathy	way (l	ntrinsi	c) begins	with for	rmation of the	
		primary comple	ex on collag	gen by l	nigh-m	olecul	ar-weight	kininog	en (HMWK),	
		prekallikrein, and	d FXII (Hagei	nan factor). Prek	allikre	e in is cor	verted to	kallikrein and	
		FXII becomes F	XIIa. FXIIa c	onverts FX	XI into	FXIa.	Factor X	Ia activat	tes FIX, which	04 M
		with its cofactor	FVIIIa form th	ne tenase c	omplex	k, whic	ch activate	es FX to F	Xa. The minor	
		role that the cont	act activation	pathway h	as in ii	nitiatin	g clot for	mation ca	n be illustrated	
		by the fact that patients with severe deficiencies of FXII, HMWK, and prekallikrein do								
		not have a blee	ding disorder.	Instead,	contac	t activ	vation sys	tem seen	ns to be more	
		involved in inflar	nmation.							
	f	Give compositio	n of teeth. Gi	ve its mecl	hanica	l prop	erties.			
		Ans:								
		Constituentsa								
		Ca^{2+}		Den	tine			Ena	mel	
		PO ₄ ³⁻	as P	2	7.0 3.0			36	5.0 7.7	
		Na ⁺ 0.3 0.5								
		Mg ²⁺			0.05 1.1).08).44	02 M
		CO ₃ ²⁻		4	4.5			2	2.3	
		F- Cl-		(0.05 0.01			0).01).30	
		$P_2 O_7^{4-}$ 0.08 0.022								
		Ash ^b	70	0			97	7.0		
		H_2O^c 10 1.55						.55		
			Т	able: Com	npositi	on of t	teeth			
			Density	Compres	sive	Your	ng's	Therma	l	
			(g/cm^3)	Strength Modu		ulus Conductivity(W/mk)		tivity(W/mk)		
				(Mpa) (GPa		1)		02 M		
		Enamel	2.2	241 48		,	0.82			
		Dentin	1.9	138 13.5 0.59						
		· · · · · · · · · · · · · · · · · · ·	Table:	Mechanio	cal pro	pertie	s of teeth			
3.		Attempt any <u>FO</u>	UR			•				16
	0	Civo alossificati	on of biomoto	riola						
	a	Ang.	UII UI DIUIIIate	11415.						
			Dolymore		Moto	le	Coromi	06	Compositos	
		Synthetia	Dianalyma	10	IVICIA	115	Ceranni	15	Composites	
		nolymore								
		Dolymethonog	Collogona		Stain	1000	Carbona		Fibor	
		Polyurethanes,	Conagens,		Stam	less		,	Fiber	
		PIFE,	Elastin,	1 1	steel,	14		ι,	reinforcea,	04 M
		Polyeunylene, Mucopolysacchandes			Coba	.10	Zirconia	, 1- 1 -	Particle	U4 IVI
		Polypropylene,	Cellulose,	use,		mum	Resorda	bie	reinforced.	
		Polyacrylate,	Proteoglyca	ns,	alloy	s,	ceramics	S.		
		PMMA,	Chitin.		Titan	ium.				
		PHEMA,								
		Hydrogel,								
		Silicon rubber.								
			Table	: Classific	ation	of bior	naterials			
	b	Write a note on	testing of bio	materials.						
		Ans:								
		In vitro method	to test bioma	terials:						
		1. Tissue cu	ilture: The gr	owth of po	ortion of	of the	intact tiss	ue withou	t prior cellular	

		dissociation. This method usually utilizes a substrate rather than a suspected	
		technic; exposure to biomaterial is similar to that for true cell culture.	
	2.	Cell culture: Roth of initially free dissociated cell. These cells may be grown in	
		to solution or on ager or other media substrate. Exposure to biomaterials may be	
		through direct contact with the bulk materials, contact through an ager.	
	3.	Organ culture: The growth of intact organ in vitro. This may vary from the use	
		of fetal bone implant, which can survive without external support system to the	02 M
		use of whole, adults, perfused organs such as kidney or heart.	
	4.	Blood contact test: Materials problem in cardiovascular devices are primarily	
		those of inadequate biological performance. This is due to the acute nature of	
		host response. These tests are generally comparative type and examine either	
		coagulation times or homeless rate in either static or dynamic system during or	
		after contact with the foreign material	
	In vivo	method to test biomaterials.	
		After in vitro test techniques to test new implant materials in extended times	
	whole	animal test is done. The site chosen is usually soft tissue. For joint replacement	
	applica	tion implantation is also performed in cortical hone. Specialized site such as the	
	applica	a are used for materials for limited applications. Commonly used expected	
	opplice	tions are rabbit dog, get sheep, goat ate Most popular sites are: Subeutaneous	
	Introm	utons are fabbil, dog, cat, sheep, goat, etc. Most popular sites are. Subcutations,	
	Intramo	ascular, initiaperitoniar (E. g. Supraspinatus), Transcorticar (E.g. Femur), and	
	Teste	edunary (E.g. Femur and ubra).	
	Tests a	re divided into two types:	
	1.	Non Functional Test: Implant is of arbitrary snape, pernaps in the form required	02.34
		for later mechanical tests of material response and floats passively in the tissue	02 M
		site. Focus on direct interaction between the substance of the material and	
	•	chemical and biological species of the implant environment.	
	2.	Functional Test: Test of this type is obviously of much greater complexity and	
		cost than the nonfunctional type. For total joint replacement, design of implant	
		would be as per the animal requirement. Design, fabrication, mechanical testing	
		and implantation may be more difficult than final production of device for human	
		use. In addition to implantation, it is required that material be placed in functional	
		mode with its wide experience in human implant service. Total hip joint	
		replacement design has been made and tested in cats, dogs, sheep and goat.	
c	Give a	ny two biomedical applications of following polymers:	
	i.	Hydrogel	
		Ans:	
	Applic	ations of Hydrogel:	
	1.	It is used for synthetic articular cartilage in reconstructive joint surgery.	
	2.	It is used in drug delivery system.	
	3.	Making maxillofacial implants for jaw and chin augmentation.	02 M
	4.	It is used for making artificial skin.	
	5.	It is used in making contact lenses.	
	ii.	Carbon	
		Ans:	
	Applic	ations of Carbon:	
	1.	Carbon coatings are used for making heart valves, blood vessel grafts and	
		percutaneous devices.	
	2.	The chronic stimulation of the cochlea for artificial hearing.	
	3.	Stimulation of the cortex.	
	4.	Dental implant.	

		5. Tissue Regeneration.					
		6. Drug delivery system				02 M	
		7. Reduction in critical surface tension and blood adhesion.					
		8. Ultra low Temperatu	re Isotropic Carl	bons (ULTI) coate	ed valves are most widely		
		used.					
	d	List four types of prosthetic	c heart valves a	nd draw any two	of them.		
		Ans:					
		Types of prosthetic heart v	alves:				
		a) Disk - in - cage					
		b) Ball - in - cage				02 M	
		c) Tilting disk					
		d) Porcine aortic valve					
		(a) (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ins of prosthetic hearing disk and (d) porcine Fig: Prosthetic	(d) t valves: (a) disk-in-cage, aortic valve).	(b) ball-in-cage,	02 M	
	ρ	List different materials use	d for total joint	renlacement			
	C	Ans:	u ioi totui joint	replacement			
		Metals	Ceramics	Polymers	Composites		
		Stainless steel 316L,	Bio inert,	PMMA,	Polymer-based,		
		Cobalt -based alloys Cast		UHMWPE/HD	Polysulfolene-carbon,		
		Co- Cr-Mo, Wrought	Carbon,	PE,	Polycarbonate-		
		CoNi-Cr-Mo, Wrought	Alumina,	PTFE,	carbon,	04 M	
		Co-Cr-W-Ni,	Zirconia,	Polysulfolene.	Polysulfone-Kevlar,		
		Titanium based materials	Calcium		Polycarbonate-		
		Cp- Ti, Ti-6Al-4V, Ti-	phosphate,		Kevlar.		
		5Al-2.5Fe, Ti-Al-Nb.	Bioglass.				
		Table: M	aterials used for	· total joint repla	cement		
4.	Α	Attempt any <u>THREE</u>				12	
	a	Describe electrokinetic the	orv in surface a	nalvsis.			
		Ans:	•	v			
		Electrokinetic theory:					
		When a materia	l with a charged	surface is placed	in a solution with ions, a		
		diffused layer of oppositely of	charged ions (co	unter ions) appear	s close to the surface. The		
		electrical double layer is the	Stern theory, w	hich describes the	change in potential Ψ as		
		the distance from the surface increases. The distance from the surface is Debye length γ .					

	Materials acquiring charge due to many reasons, example: Metals develop a surface potential due to surface oxidation. The presence of the electrical double layer gives rise to electrokinetic phenomena when either the particles or the medium moves. The streaming potential and electro osmosis owe their existence to the electrical double layer. Electro osmosis is observed when an electrical potential is applied to the opposite ends of porous plug in a liquid medium. A flow of liquid through plug occurs. The streaming potential is the converse. Forced motion of liquid through a porous plug generates an electrical potential, called Zeta potential (ζ). The Zeta potential is the electrical potential at the plane of shear in the liquid. Measurements of ζ potential have been useful for determining characteristics of blood vessels. The surface properties are among the most important material properties that a biomaterial possesses. This is due to the fact that when a device is implanted into tissues, the surface chemistry will determine to a large extent how the material and the tissues, or fluids interact.	04 M
b	 Write any four applications of silicon rubber. Ans: Applications of silicon rubber: Used to make catheters. Replacement of destroyed or diseased finger joints. Replacement of carpal bones, toe prostheses and capping temporomandibular joints. Breast augmentation. Maxillofacial surgery (includes nasal supports, jaw augmentation, orbital floor repair, and chin augmentation). Artificial bladder, sphincters and testicles. Making artificial heart valves. Drug delivery system. Middle ear prosthesis. 	04 M
C	Draw neat labelled diagram of heart. Ans:	04 M
d	Describe the concept of bone healing. Ans: Concept of bone healing: Upon bone fracture a certain sequence of cellular events is observed for	

	healing bones. There are basically three types of cellular activities :	
	1. Fibroblastic	
	2. Chondroblastic	
	3. Osteoblastic	
	Fibroblast from the periosteum and surrounding tissues proliferate vigorously into the	
	region of fracture within 1 or 2 days. During the same period capillaries being	
	proliferating into the wound invading the fibrous callus prior to actual new bone	
	formation. Within the first week osteogenic cells begin to migrate from the peripheral	
	regions towards the bone fracture. After about a week, the level of mucopolysaccharides	04 M
	begins to decrease while collagen production by fibroblasts, chondroblasts and	
	osteoblasts becomes significant. In a little more than 1 week collagen fibers bridge the	
	entire gaps of the fracture and the pH returns to normal. Osteoblasts begin to form new	
	trabecular bone in the marrow. After 2 weeks a collagen matrix replaces the entire clot	
	and chondroblasts are seen in the region between the matrix and the advancing bone	
	growth. After a week or two the uptake of calcium and phosphorous into the wound area	
	increases which is attributed to the increased rate of bone mineral deposition. By the	
	third and fourth weeks the major activity is the replacement of chondroblasts by	
	trabecular bone and after 5-6 weeks the major activity is the remodeling of the bone	
_	trabeaculae with the deposition of compact bone.	
В	Attempt any <u>ONE</u>	06
a	List any four applications of collagen in dentistry.	
	Ans:	
	Applications of collagen in dentistry:	
	1. Prevention of oral bleeding	
	2. Support of regeneration of periodontal tissues	
	3. Promotion of healing of mucosal lining	06 M
	4. Prevention of migration of epithelial cells	
	5. Dressing materials	
	6. Carrier substance for immobilization of various active substances used in	
	dentistry.	
	7. Decreased seepage of blood during periodontal mucoginvival surgery.	
b	Write a short note on knee-joint repair.	
	Ans:	
	The knee-joint repair consists of:	
	1. The Knee Joint	
	2. Repair of Anterior Cruciate Ligament	
	3. Total Knee Replacement	
	The Knee Joint:	
	Anatomy and physiology of knee joint is more complicated than a hip	
	because of the complex loading pattern of the knee. The knee consists of three long	
	bones, the femur, tibia and fibula and a smaller bone, the patella. These bones are held	
	together by ligaments. The lower end of the femurits expanded to form a curved surface	02 14
	which is covered with articular cartilage. Cartilage to cartilage contact between temur	02 IVI
	and tibla occurs at two separate locations that are separated by a grove by which anterior and nosterior erusists ligements (ACL and DCL respectively) are found ACL and DCL	
	and posterior cruciale figurations (ACL and PCL respectively) are found. ACL and PCL hold these bones together. The fibule is attached to the formur with tibicl collectors	
	ligement and to the general of the tibic fibular joint. The general is filled with sumavial	
	flyid that bothes the articulate surface of each hone and maintains a low coefficient of	
	friction between the two surfaces. Surpovial fluid is assortially a dialysate of blood	
	metion between the two surfaces. Synovial nutures essentially a thatysate of blood	

plasma with added hyaluronic acid. The quadriceps femories muscle and patellar bone are attached through the patellar tendon/ligament. The muscular contractions and length changes in the appropriate muscles transfer the energy to tendons, which results in translation and rotation of bones of the knee. Thus the motion of the tibio-femoral joint is due to a combination of translation and rotation.

Repair of Anterior Cruciate Ligament:

At present time, repair of anterior cruciate ligament (ACL) is not popular. The primary problem is the approach to the ligament. If both of the menisci are normal, many groups debride the anterior cruciate and rehabilitate the knee. If one or both of menisci are torn, then one must direct attention to the possibility of ligament repair or reconstruction. Replacement can be accomplished using Autografts or devices containing synthetic polymers. The reconstruction of the ACL using autogenous tissues including illiotibial band, semitendinous, patella and gracilis tendons and meniscus. When biologically grafts are not available, the replacement of ACL can be achieved using a number of medical devices made of synthetic materials that are conditionally approved for clinical use. These include augmentation devices obtained from carbon fiber, Dacron, Teflon, and braided polyethylene.

Total Knee Replacement:

The femoral component consists of a fairly thin, rigid shell with an attached fixation system to bone. The geometry of the femoral shell requires a stiff, high strength, low wear rate material such as metal. The femoral component is fixed to the cortical bone of the femoral shaft. The fixation system may be either PMMA cement or a biological ingrowth type. The tibial portion consists of a broad plateau covering the tibia, consisting of a stiff metal tray supporting a polymeric or fiber reinforced polymer. Repeated tensile loading may cause failure of PMMA-bone interface TKR utilizes a limited number of metallic alloys including cobalt-chromium and titanium alloy. Cobalt-chromium alloy combined with ultrahigh molecular weight polyethylene (UHMWPE) remains the contact surfaces of choice, despite some adverse effects on biocompatibility and mechanical problems. These include creep and fatigue of UHMWPE component due to high stresses and repeated loading and wear of polymeric contact surface due to adhesion of the polymeric surface to the metal. High stresses and repeated loading and wear of polymeric surface to the metal.

5.		Attempt any <u>FOUR</u>	16
	a	List three imperfections in crystal and sketch any one.	
		Ans:	
		Imperfections in crystal:	
		1. Point defects	02 M
		2. Line defects	
		3. Plane Defects	
		(a) $+-+-+-+$ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	02 M
		Fig: Point defects	

		-
	Edge dislocation Fig: Line defects Fig: Dense defects Fig: Dense defects	
h	Fig: Flate defects Enlist the properties of zircopie and write any two applications of it	
	 Ans: Properties of Zirconia: Use temperatures up to 2400°C High density Low thermal conductivity (20% that of alumina). Chemical inertness. Resistance to molten metal's. Ionic electrical conduction. Wear resistance. High fracture toughness. High hardness. High refractive index. Excellent biocompatibility and wear properties. Fine grain size, lack of surface roughness. Applications of Zirconia: Dental implants. 	02 M
	2. Shoulder prosthesis.	
	3. Knee and hip replacements.	02 M
	4. Orthopedic prostnesis. 5. Middle-ear reconstruction	
	6. Oral therapy in the treatment of hyperkalemia.	
с	Give any four biomedical applications of stainless steel.	
	Ans:	
	Applications of stainless steel:	
	FOR making:	
	2. Bone plates	
	3. Intramedullary pins	04 M
	4. Heart valves	
	5. Cardiac pacemaker electrodes	
	6. Screws	
	7. Nuts, bolts	
	8. Orthopedic implants (knee, hip, ankle joint replacement).	

	d Write a short note on temporary fixation device.									
		Ans:								
		Tempor	ary fixation de	vice:						
		c· · ·	Temporary fix:	ation of joints	can be ach	neves by im	plementing te	mporary		
		invation devices. The purpose of temporary fixation devices is to stabilize fractured bone								
		until natural healing processes have restored sufficient strength so that the implant can be								
		Removed. These devices include pins, nails, wires, screws, plates, and intramedullary								
		 devices. Screws are used with the plates to secure them to the bone. 								
		2. N	luts can be used	to keep the scre	ew or pin from	m pulling out	of bone.			
		3. E	Bolts are also us	so used to compress bone, as in the case of the tibial bolts, which are						
		u	sed for displace	d, split fractures	s of the tibial	plateau.				
		4. F	Plates are used	for joining bo	ne fragment	s together du	uring healing	of load-		
		b	earing bones. T	he plate provide	s rigidity for	the fixation of	of the fracture.			
		5. V	Vires used to pro	ovide temporary	stabilization	during opera	ition.			
		6. F	ins may be used	for intramedul	lary fixation	(Used for fixa	ation of fracture	es).		
		<u>/. N</u>	ails used to pre	vent rotation and	d shortening,	, particular fra	actures.			
	e	Metals a	are less biocom	patible than po	lymers. Just	tify your ans	wer.			
		Ans:			_					
		Metals a	ire less blocom	patible than po	lymers:		•			
		11	Metallic impla	nts can fail due	to fracture lo	osening or co	rrosion. A corr	osion		
	cell may be developed near the implant due to variety of reason. It releases significant						icant	04 M		
		state than metals and therefore do not interact with other molecules including tissues.								
	6	I ne metals lower their chemical potential by reacting with other materials.								
	I	Give mechanical properties of bone.								
		Ans:		D'		T	C	1		
				Direction of	Modulus	Tensile	Compress			
				test		strength	ive			
					elasticity	(Mpa)	strength			
		·	Lachana	I an aite din al	(Gpa)		(Mpa)			
			Leg bone	Longitudinal	17.0	121	1.67			
			Femur		17.2	121	16/			
			11D1a		18.1	140	159		04 M	
			Fibula	T 1. 11 1	18.6	146	123		U4 IVI	
			Arm bones	Longitudinal		100	100			
			Humerus		17.2	130	132			
			Radius		18.6	149	114			
			Ulna		18	148	117			
			Vertebrae	Longitudinal						
			Cervical		0.23	3.1	10			
			Lumbar		0.16	3.7	5			
			Spongy bone		0.09	1.2	1.9			
			Skull	Tangential	-	-	-			
			Skull	Tangential Radial	-	-	97			
			Skull	Tangential Radial Table: Mechar	- nical proper	- ties of bone	97			
6.		Attempt	Skull t any <u>FOUR</u>	Tangential Radial Table: Mechar	- nical proper	- ties of bone	97		16	
6.		Attempt	Skull t any <u>FOUR</u>	Tangential Radial Table: Mechar	- nical proper	ties of bone	97		16	

<u> </u>			
	c	State the function of eye-shield and list polymers used for optical implant.	
		Alls: Function of eve-shield:	
		These are used in the treatment of basement membrane associated diseases	
		corneal abrasion and erosion enithelial defects cataract extraction penetrating	02 M
		keratroplasty and other diseases that cause eve inflammation	
		List polymers used for optical implant:	
		1. PMMA	
		2. PHEMA	
		3. Silicone	02 M
		4. Bioglass	
		5. Polypropylene.	
	d	State the need of cardiac pacemaker.	
		Ans:	
		Need of cardiac pacemaker:	
		The rhythmic beating of the heart is due to triggering pulses that originate in	
		an area of specialized tissue in the right atrium of the heart. This area known as the Sino-	
		arterial node. In abnormal situation, if this natural pacemaker cases to function or	04 14
		becomes unreliable or if the triggering pulse does not reach heart muscle because of	04 M
		gets disturbed. When monitored, this manifests itself through a decrease in the heart rate	
		and changes in the ECG waveform. By giving external electrical stimulation impulses to	
		the heart muscle, it is possible to regulate the heart rate. These impulses are given by an	
		electronic instrument called a pacemaker.	
	e	Draw a neat labelled structure of kidney.	
		Ans:	
		Kidney —	
		Calucos	
		Cutyces	
		President and a company of the second	0434
		Renat artery Renal	04 M
		Renal vein pelvis	
		Medulla	
		Ureter	
		Cortex Eige Structure of Line	
		Fig: Structure of kidney	