MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis

Subject Code 17510
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \hline \text { Q. } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	$\begin{gathered} \text { A) } \\ \text { (a) } \\ \text { Ans. } \end{gathered}$	Attempt any three: Draw neat diagram of basic structure of power system network.	12 4M Correct Diagram 4M

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

$\begin{gathered} \text { c) } \\ \text { Ans } \end{gathered}$	"AC resistance is more than DC resistance", Justify. When dc current flow in line conductor, the current is uniformly distributed across the section of the conductor whereas flow of alternating current is non uniform over the cross section in the manner that current density is higher at the surface of the conductor compared to the current density at its centre. This effect is more pronounced as frequency increases this phenomenon is called as skin effect. It causes power loss for given rms AC more than the loss when same value of DC is flowing through the conductor. Therefore AC resistance is greater than DC resistance. OR AC resistance is always higher than $D C$ resistance due to 1) Skin effect: The distribution of current throughout the cross section of a conductor is uniform when DC is passing through it. But when AC is flowing through a conductor, the current is nonuniformly distributed over the cross section in a manner that the current density is higher at the surface of the conductor compared to the current density at its center. This phenomenon is called skin effect. 2) Proximity effect: When the alternating current is flowing through a conductor alternating magnetic flux is generate surrounding the conductor. This magnetic flux associates with the neighboring conductor and generate circulating currents. This circulating currents increases resistance of conductor. This phenomenon is called as, "proximity effect".	Skin effect 2M Proximit y effect 2M
d) Ans	List advantages of generalized circuit representation of transmission line. 1. The generalized circuit equations are well suited to transmission lines. Hence for given any type of the transmission line (short, medium, long). The equation can be written by knowing the values of A B C D constants. 2. Just by knowing the total impedance and total admittance of the line the values of A B C D constants can be calculated. 3. By using the generalized circuit equations $\mathrm{V}_{\mathrm{RNL}}$ $V_{S}=A V_{R}+B I_{R}$ i.e. when $I_{R}=0$ $\mathrm{V}_{\mathrm{RNL}}=\mathrm{V}_{\mathrm{S}} / \mathrm{A}$ Now the regulation of the line can be immediately calculated by $\%$ Voltage Regulation $=V_{S} / \mathrm{A}-\mathrm{V}_{\mathrm{R}} / \mathrm{V}_{\mathrm{R}} \mathrm{X} 100$	4M Any four advanta ges 1M each

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

	4. Output power $=V_{R} I_{R} \operatorname{Cos} \phi_{R}$ for $\ldots .1 \phi \ldots c k t$. $=3 \mathrm{~V}_{\mathrm{R}} \mathrm{I}_{\mathrm{R}} \operatorname{Cos} \phi_{\mathrm{R}} \text { for } \ldots 3 \phi \ldots \ldots . . \mathrm{ckt} .$ $\begin{aligned} \text { Input power } & =\mathrm{V}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}} \operatorname{Cos} \phi_{\mathrm{S}} \ldots \ldots \ldots \ldots .1 \phi . . \mathrm{ckt} . \\ & =3 \mathrm{~V}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}} \operatorname{Cos} \phi_{\mathrm{S}} \ldots \ldots \ldots \ldots .3 \phi . . c k t . \end{aligned}$ losses in the line $=$ input - output 5. By calculating input and output power efficiency can be calculated. 6. Series circuit: When two lines are connected such that the output of the first line serves as output to the second line and the output of the second line is fed to the load, the two lines behave as to parts networks in cascade. Its ABCD constants can be obtained by using following matrix: $\left\|\begin{array}{ll} A & B \\ C & D \end{array}\right\|=\left\|\begin{array}{ll} A_{1} & B_{1} \\ C_{1} & D_{1} \end{array}\right\| \times\left\|\begin{array}{ll} A_{2} & B_{2} \\ C_{2} & D_{2} \end{array}\right\|$ 7. When two transmission lines are connected in parallel then the resultant two part network can be easily obtained by $\begin{gathered} A=\frac{A_{1} B_{2}+A_{2} B_{1}}{B_{1}+B_{2}} \\ B=\frac{B_{1} B_{2}}{B_{1}+B_{2}} \\ D=\frac{D_{1} B_{2}+D_{2} B_{1}}{B_{1}+B_{2}} \\ C=C_{1}+C_{2}-\frac{\left(A_{1}-A_{2)}\left(D_{2}-D_{1}\right)\right.}{B_{1}+B_{2}} \end{gathered}$	
В)	Attempt any one:	6
a) Ans	Draw circuit diagram for performing tests on transmission line model to measure generalized circuit constants. Also write stepwise procedure to perform the tests. Measurement of Generalized Circuit Constants can be done by conducting Open circuit and short circuit test. If a transmission line is already erected, the constants can be measured by conducting the open circuit and short circuit test on the two ends of the line.	6M Explana tion 1M

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis

Subject Code 17510
Consider a transmission line and determine the impedances which are complex quantities. The magnitudes are obtained by ratio of the voltages and currents and the angle with the help of wattmeter reading.
The connection diagram are shown below

The test is conducted on sending end side.
Now, $\quad V_{s}=A V_{R}+\mathrm{B} I_{R}------(1)$
$I_{s}=\mathrm{C} V_{R}+\mathrm{D} I_{R}$
From these under o. c test
We to get, as $I_{R}=\mathrm{C} V_{R}$
$\therefore Z_{s o}=\frac{V_{s}}{I_{s}}=\frac{A V_{R}}{C V_{R}}=\frac{A}{C}$
-sending end impedance with receiving end open ckted.
From S.C. test as $V_{R}=0$
$V_{s}=\mathrm{B} I_{R} \times I_{s}=\mathrm{D} I_{R}$
$\therefore Z_{s s}=\frac{V_{s}}{I_{s}}=\frac{B}{D}$
-sending end impedance with receiving end short circuited
Note - These impedances $Z_{s s}, Z_{s o}$ are complex quantities, the magnitudes are obtained by the ratio of the voltages and currents. The angle is obtained with the help of wattmeter.

Similarly the same tests can be named out on receiving end side.
\therefore From o.c. test -
Generalized $=$ O.C can be written
As $V_{R}=\mathrm{D} V_{s}-\mathrm{B} I_{s}$
$I_{R}=-\mathrm{C} V_{s}+\mathrm{A} I_{s}$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis

Subject Code 17510

WINTER - 2018 EXAMINATION MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

WINTER - 2018 EXAMINATION
MODEL ANSWER
Subject: Power System Analysis
Subject Code 17510

2	a) Ans	Attempt any two i) State generalised circuit constants expression for medium transmission line considering ' T ' and ' π ' network. i) Nominal T method $\begin{aligned} & A=D=1+\frac{Y Z}{2} \\ & B=Z\left(1+\frac{Y Z}{4}\right) \\ & C=Y \\ & Y=\text { Total admittance } / \text { phase } \\ & Z=\text { Total impedance } / \text { phase. } \end{aligned}$ Nominal π method $\begin{aligned} & A=D=1+Y Z / 2 \\ & B=Z \\ & C=Y(1+Y Z / 4) \end{aligned}$	16 8 M T method 2M method 2M
	Ans	ii) Prove that the complex power in power system is defined as $S=I^{*}$ instead of $S=V^{*} I$. Consider a single-phase load fed from a source as in Fig. . Let $\begin{aligned} & V=\|V\| \angle \delta \\ & I=\|I\| \angle(\delta-\theta) \end{aligned}$ (a) (b)	

WINTER - 2018 EXAMINATION
MODEL ANSWER
Subject: Power System Analysis
Subject Code 17510

	When θ is positive, the current lags behind voltage. This is a convenient choice of sign of θ in power systems where loads have mostly lagging power factors. Complex power flow in the direction of current indicated is given by or $\begin{aligned} S & =V I^{*} \\ & =\|V\|\|I\| \angle \theta \\ & =\|V\|\|I\| \cos \theta+j\|V\|\|I\| \sin \theta=P+j Q \end{aligned}$ $\|S\|=\left(P^{2}+Q^{2}\right)^{1 / 2}$ Here S = complex power (VA, kVA, MVA) $\|S\|=$ apparent power (VA, kVA, MVA); it signifies rating of equipments (generators, transformers) $P=\|V\|\|I\| \cos \theta=$ real (active) power (watts, kW, MW) $Q=\|V\|\|I\| \sin \theta=$ reactive power = voltamperes reactive (VAR) = kilovoltamperes reactive (kVAR) = megavoltamperes reactive (MVAR) It immediately follows from Eq. that Q, the reactive power, is positive for lagging current (lagging power factor load) and negative for leading current (leading power factor load). With the direction of current indicated in Fig. $\quad S=P+j Q$ is supplied by the source and is absorbed by the load.	$\mathbf{2 M}$ 2M
b) Ans	A 3-phase, $50 \mathrm{~Hz}, 100 \mathrm{~km}, 132 \mathrm{kV}$ overhead line has conductors placed in a horizontal plane of 4.5 m apart. conductor diameter is 22.4 mm , calculate capacitance per phase per km , capacitive reactance per phase, charging current per phase and total Mvars. Given data $\begin{aligned} \mathrm{d} & =22.4 \mathrm{~mm} \\ = & 22.4 \times 10^{-3} \mathrm{~m} \\ \mathrm{r} & =11.2 \times 10^{-3} \mathrm{~m} \\ \mathrm{D} & =4.5 \mathrm{~m} \\ \mathrm{~V} & =132 \mathrm{kV} \\ \mathrm{f} & =50 \mathrm{~Hz} \end{aligned}$	8M

WINTER - 2018 EXAMINATION

MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

c) Ans	A 275 kV , 3-phase line has following line parameters $\mathrm{A}=0.9 \angle 1.5^{\circ}$; $B=110 \angle 75^{\circ}$. it sending end voltage is 275 kV , determine i) sending end power if load of 150 MW at $\mathbf{0 . 8 5}$ lagging p.f. is being delivered at receiving end. Given data $\begin{aligned} & V_{s}=275 \mathrm{kV} \\ & V_{R}=275 \mathrm{kV} \\ & \mathrm{~B}=110 \angle 75^{\circ} \\ & \mathrm{A}=0.9 \angle 1.5 \mathrm{o} \end{aligned}$	8M

WINTER - 2018 EXAMINATION

MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510
$\cos \phi_{R}=0.85$ lagging
To obtain δ we use receiving end Power

$$
\begin{aligned}
& P_{R}=\frac{V_{S} V_{R}}{B} \operatorname{Cos}(\beta-\delta)-\frac{A V_{R^{2}}}{B} \operatorname{Cos}(\beta-\alpha) \cdots-\cdots----1 / 2 \mathrm{M} \\
& 150=\frac{275 \times 275}{110} \operatorname{Cos}(75-\delta)-\frac{0.9 \times 275^{2}}{B} \operatorname{Cos}(75-1.5) \\
& 150=687.5 \operatorname{Cos}(75-\delta)-618.75 \operatorname{Cos}(73.5) \\
& 150=687.5 \operatorname{Cos}(75-\delta)-175-73 \\
& 0.473=\operatorname{Cos}(75-\delta) \\
& 75-\delta=\operatorname{Cos}^{-1}(0.473) \\
& 75-\delta=61.719 \\
& \delta=75-61.719 \\
& \delta=13.281^{\circ}
\end{aligned}
$$

Sending end power is given by

ii)Maximum power at receiving end that can be delivered if sending end voltage is 295 kV with receiving end voltage at 275kV.
For max receiving end power condition is $B-\delta=0$ \qquad
Ans

$$
\begin{align*}
& P_{R_{\max }}=\frac{V_{S} V_{R}}{B}-\frac{A V_{R}^{2}}{B} \cos (\beta-\alpha) \ldots \ldots \ldots \tag{1M}\\
&= \frac{295 \times 275}{100}-\frac{0.9 \times(275)^{2}}{100} \cos (75-1.5) \tag{1M}\\
& P_{R_{\max }}= 561.77 \mathrm{Mw} \ldots \ldots \ldots \ldots \ldots(1 \mathrm{M})
\end{align*}
$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis

3	a) Ans	Attempt any four: Describe the importance of impedance diagram and reactance diagram of power system. Importance of impedance diagram: 1. Each component of power system is represented by its equivalent circuit Impedance diagram. So it is simple representation of power system. 2. Impedance diagram is useful to calculate performance of system under load condition or after occurrence of fault. Importance of reactance diagram 1. In Impedance diagram resistances and capacitances, no load branch of transformer are neglected to obtain Reactance diagram. So it gives simplified diagram of power system. 2. Reactance diagram is useful for Fault calculation parameters.	$\begin{gathered} \hline 16 \\ 4 \mathrm{M} \\ \\ \text { Each } \\ \text { point } \\ 1 M \end{gathered}$
	b) Ans	Describe stepwise procedure to draw receiving end circle diagram along with diagram. Step-1: Draw the X-Y plane in which plane X represents the active	

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

d) Ans	A 220kV transmission line has following GCC: $\mathbf{A}=\mathbf{0 . 8 5} / \mathrm{F3}^{\circ}$, $B=300 \angle 78^{\circ}$. Determine receiving end active power if voltage at each end is maintained at 220 kV and unity p.f. Given data $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{R}}=220 \mathrm{KV}, \mathrm{~A}=0.85<73^{\circ}, \mathrm{B}=300<78^{\circ}$ Note: Given α value is not in range If students assumed other value, it should be considered Then for unity power factor $\mathrm{Q}_{\mathrm{R}}=0$ $\therefore \mathrm{Q}_{\mathrm{R}}=\left\|\mathrm{V}_{S}\right\|\left\|\mathrm{V}_{\mathrm{R}}\right\| /\|\mathrm{B}\| \operatorname{Sin}(\beta-\delta)-\|\mathrm{A}\| /\|\mathrm{B}\|\left\|\mathrm{V}_{\mathrm{R}}\right\|^{2} \operatorname{Sin}(\beta-\alpha)$ Substituting all values we get $\begin{aligned} & 0=(220) \mathrm{X}(220) / 300 \operatorname{Sin}(\beta-\delta)-(0.85)(220)^{2} / 300 \operatorname{Sin}(78-73) \\ & 0=161.33 \operatorname{Sin}(\beta-\delta)-11.95 \\ & \operatorname{Sin}(\beta-\delta)=0.0740 \\ & \beta-\delta=4.2478 \end{aligned}$ Substituting this is in equation of P_{R} we get $\begin{aligned} & \mathrm{P}_{\mathrm{R}}=\left\|\mathrm{V}_{\mathrm{S}}\right\|\left\|\mathrm{V}_{\mathrm{R}}\right\| /\|\mathrm{B}\| \operatorname{Cos}(\beta-\delta)-\|\mathrm{A}\| /\|\mathrm{B}\|\left\|\mathrm{V}_{\mathrm{R}}\right\|^{2} \operatorname{Cos}(\beta-\alpha) \\ & =(220)(220) / 300 \operatorname{Cos}(4.247)-0.85 \times(220)^{2} / 300 \operatorname{Cos}(78-73) \\ & =160.89-(137.133)(0.996) \\ & =160.89-136.58 \\ & \mathrm{P}_{\mathrm{R}}=24.31 \mathrm{MW} . \\ & \text { Unity power at receiving end is } 24.31 \mathrm{MW} \quad-----------2 \mathrm{M} \end{aligned}$	4M
e) Ans	Describe concept of self GMR and self GMD in calculation of transmission line inductance with an example. Definition of Self \& mutual GMD $\begin{aligned} & L_{A} \\ & =2 \\ & \times 10^{-7} \operatorname{In} \frac{\left[(D _ { 1 1 ^ { \prime } } \ldots D _ { 1 j ^ { \prime } } \ldots D _ { 1 m ^ { \prime } }) \ldots (D _ { i 1 ^ { \prime } } \ldots D _ { i j ^ { \prime } } \ldots D _ { i m ^ { \prime } }) \ldots \left(D_{n 1^{\prime}} \ldots D_{n j^{\prime}} \ldots\right.\right.}{\left[(D _ { 1 1 } \ldots D _ { 1 i } \ldots D _ { 1 n }) \ldots (D _ { i 1 } \ldots D _ { i i } \ldots D _ { i n }) \ldots \left(D_{n 1} \ldots D_{n i} \ldots D\right.\right.} \end{aligned}$ $/ m$ $L_{A}=2 \times 10^{-7} \operatorname{In} \frac{D m}{D s} H / m$	4M Each term with example 2M

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

		Ds --GMR: the denominator of the argument of the logarithm in above Equation is the n^{2} th root of n^{2} product terms (n sets of n product terms each). Each set of n product term pertains to a filament and consist of $r^{\prime}\left(D_{i i}\right)$ for that filament and $(n-1)$ distances from that filament to every other filament in conductor A. The denominator is defined as the self-geometric meandistance (self GMD) of conductor A, and is abbreviated as $D_{s A}$. Sometimes, self GMD is also called geometric mean radius ----[2 MARK] Similarly, Dm --GMD: The numerator of the argument of the logarithm in above Equation is the m ' nth root of the m ' n terms, which are the products of all possible mutual distances from the n filaments of conductor A to m ' filaments of conductor B . It is called mutual geometric mean distance(mutual GMD) between conductor A and B and abbreviated as $D_{m .}----[2$ MARK] Example let radius of conductor $\mathrm{X} \& \mathrm{Y}$ is $=\mathrm{r}$ 1 Self GMD of conductor $\mathrm{X}=\sqrt[4]{ } D_{11} D_{1^{\prime} 1^{\prime}} D_{11^{\prime}} D_{1^{\prime} 1}=\sqrt[4]{r^{\prime} x r^{\prime} x d x d}$ $=\sqrt{r^{\prime} x} d$ Self GMD of conductor $Y=r$ ' Mutual GMD between conductor X \& $\mathrm{Y}=\sqrt{ } D_{12} D_{1^{\prime 2}}=$ $\sqrt{\left(\frac{d}{2}+D\right) x\left(D-\frac{d}{2}\right)}$	
4	A) a) Ans	Attempt any three: State factors that influence skin effect Skin effect depends on factors: - Current - Permeability of material - Frequency	12 4M Any four factors 1M each

WINTER - 2018 EXAMINATION
MODEL ANSWER
Subject: Power System Analysis
Subject Code 17510

	- Conductor diameter - Diameter - Material of conductor	
b) Ans	```A 3-phase 132 kV transmission line delivers 40 MVA at 0.8 p.f. lagging. Draw receiving end circle diagram and determine sending end voltage for \(A=0.98 \angle 3^{\circ}, B=140 \angle 78^{\circ}\). Given data \(V_{R}=132 \mathrm{kV}\) Load 40MVA, 0-8pf \(\mathrm{A}=0.9 \angle 3\) \(B=140 \angle 78\) \(X\) coordinates \(=\frac{-A V_{R}{ }^{2}}{B} \operatorname{Cos}(\beta-\alpha)\) \(=\frac{-0.98 \times 132^{2}}{140} \operatorname{Cos}(78-3)\) = 31.57 MW ----------------------1M \(X\) coordinates \(=\frac{-A V_{R}{ }^{2}}{B} \operatorname{Sin}(\beta-\alpha)\) \(=\frac{-0.98 \times 132^{2}}{140} \operatorname{Sin}(78-3)\) = 117.81 MVAR-----------------------1M Selecting scale on X -axis \(1 \mathrm{~cm}=10 \mathrm{MW}\) Y-axis \(1 \mathrm{~cm}=10 \mathrm{MVAR}\) \(\therefore 1 \mathrm{~cm}=10 \mathrm{MVA}\) For Graph Radius \(=C Q=15.5 \mathrm{~cm}\) =155MVA ------------------1M \(=\frac{V_{S} V_{R}}{B}\) \(155=\frac{V_{S \times 132}}{140}\) \(\therefore V_{S}=164.39 \mathrm{kV}--------1 \mathrm{-}\)```	4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

c) Ans	List the advantages of p.u. system. Advantages of PU calculations: - Manufacturers specify impedance of apparatus in \% or P.U. values on basis of name plate rating. - P.U. impedance of machine of same type having different ratings usually lay within narrow range though actual values differs with rating. Hence if impedance is not known, we can consider value from table in which avg. value for different type of machine are given. - P.U values are same referred to either side of transformer. - Type of connection of 3Φ transformer in 3Φ circuit does not affect p.u. values.	4M Any four advanta ges 1M each

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

d) Ans	Derive the condition for maximum power transferred ($\mathbf{P}_{\text {RMAX }}$) at receiving end for a two port network. As the receive end side active power is given by, $P_{R}=\frac{\left\|V_{S}\right\|\left\|V_{R}\right\|}{\|B\|} \cos (\beta-\delta)-\frac{\|A\|\left\|V_{R}\right\|^{2}}{\|B\|} \cos (\beta-\alpha)-\cdots------1 \mathrm{M}$ For max value differentiate above eq. w.r.t. ' δ ' as $V_{S}, V_{R}, A, B \& \alpha$ are constant. $\therefore \frac{d P_{R}}{d \delta}=\frac{d}{d \delta}\left[\frac{\left\|V_{S}\right\|\left\|V_{R}\right\|}{\|B\|} \cos (\beta-\delta)-\frac{\|A\|\left\|V_{R}\right\|^{2}}{\|B\|} \cos (\beta-\alpha)\right] \quad---1 \mathrm{M}$ Equate this equation w.r.t. zero	4M
B) a) Ans	Attempt any one of the following: Prove that $A D-B C=1$ for a generalized circuit with π and T network. Nominal T method: Figure shows the nominal T method with capacitance is connected at centre of line, the line resistance and reactance is halfly tempered on both side T- Network.	6 6M Diagram 2M

WINTER - 2018 EXAMINATION

MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

$$
\begin{aligned}
& \left.\qquad \begin{array}{l}
I_{S}=Y V_{R}+I_{R}\left(1+\frac{Y Z}{2}\right)----(i i i) \\
\qquad V_{S}=\left(1+\frac{Y Z}{2}\right) V_{R}+\left(Z+\frac{Y Z}{4}\right) I_{R}----(i v)
\end{array}\right\} \\
& \text { comparing equation (iii)and (ii)withactual equation } V_{S} \& I_{S} \text { then } \\
& \qquad \begin{array}{l}
A=D=1+\frac{Y Z}{2}, \\
B=Z\left(1+\frac{Y Z}{4}\right), \\
C=Y
\end{array}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathrm{AD}-\mathrm{BC} & =\left(1+\frac{Y Z}{2}\right)\left(1+\frac{Y Z}{2}\right)-Y Z\left(1+\frac{Y Z}{4}\right) \\
& =1
\end{aligned}
$$

2M
b) Find self GMD for following arrangement of conductors with radius of each conductor as 'r' in Fig 01.
Ans

Fig. 01

Case (i)
Self GMD $D_{S}=\sqrt[9]{\left(D_{11} D_{12} D_{13}\right)\left(D_{21} D_{22} D_{23}\right)\left(D_{31} D_{32} D_{33}\right)}$
$\mathrm{D}_{11}=\mathrm{D}_{22}=\mathrm{D}_{33}=0.7788 \mathrm{r}$
$D_{12}=D_{23}=D_{32}=D_{21}=2 r\left(D_{11} D_{12} D_{13}\right)^{2}$
$D_{13}=D_{31}=4 r$
Self GMD DS $=\sqrt[9]{\left(\mathrm{D}_{11} \mathrm{D}_{12} \mathrm{D}_{13}\right)^{2}\left(\mathrm{D}_{21} \mathrm{D}_{22} \mathrm{D}_{23}\right)}$
$=\sqrt[9]{(0.7788 r \times 2 R X 4 r)^{2}(2 r \times 0.7788 r \times 2 r)}$

$$
=\sqrt[9]{(r)^{9}(120.92)}
$$

Self GMD $=1.70 \mathrm{r}$

WINTER - 2018 EXAMINATION

MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Case ii) \\
Self GMD \(\mathrm{D}_{\mathrm{S}}=\sqrt[16]{(D 11 D 12 D 13 D 14)^{2}(D 21 D 22 D 23 D 24)^{2}}---1 \mathrm{M}\)
\[
\begin{aligned}
\& \mathrm{D}_{11}=r^{1}, \mathrm{D}_{12}=2 \mathrm{r}, \mathrm{D}_{13}=4 \mathrm{r}, \mathrm{D}_{14}=6 \mathrm{r} \\
\& \mathrm{D}_{21}=2 \mathrm{r}, \mathrm{D}_{22}=r^{1}, \mathrm{D}_{23}=2 \mathrm{r}, \mathrm{D}_{24}=4 \mathrm{r}
\end{aligned}
\]
\[
\begin{aligned}
\& \sqrt[8]{(0.7788 r \times 2 r X 4 r \times 6 r)(2 r \times 0.7788 r \times 2 r \times 4 r)} \quad----1 \mathrm{M} \\
\& \mathrm{D}_{\mathrm{s}}=2.155 \mathrm{r} \quad---------1 \mathrm{M}
\end{aligned}
\]
\end{tabular} \& \\
\hline 5 \& a)

Ans \& | Attempt any two |
| :--- |
| A 3 phase single circuit transmission line delivering a load of 50 MVA at 110 kV at 0.8 lagging p.f. with $\mathrm{GCC} \mathrm{A}=\mathrm{D}=0.98 \angle 3^{\circ}$, $B=110 \angle 75^{\circ} \Omega, C=0.0005 \angle 80^{\circ}$ siemens. Determine sending end voltage, sending end current, sending p.f. and sending end power. | \& \[

$$
\begin{gathered}
16 \\
\mathbf{8 M}
\end{gathered}
$$
\]

\hline
\end{tabular}

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

	$\begin{aligned} \text { Sending end } \mathrm{pf} & =\operatorname{Cos} \phi \mathrm{s}=\operatorname{Cos} 44.23 \\ & =0.7165 \mathrm{lag} \end{aligned}$ -------1M		
b) Ans	Along with diagram write stepwise procedure to draw sending end circle diagram. Also state data required to draw sending end circle diagram. Procedure for sending end circle diagram: i. Step-1: Draw the $\mathrm{X}-\mathrm{Y}$ plane in which plane X represents the active power (MW) \& axis-y-represents the Reactive power (MVA). with proper scale. ii. Step-2: The centre of sending end circle is located at the tip of phaser $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{\mathrm{S}}\right\|^{2}<\beta-\alpha$ drawing OC_{S} from positive MW axis. OR locate X and Y coordinates of the centre are $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{\mathrm{S}}\right\|^{2} \operatorname{Cos}(\beta-\alpha)$ and $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{\mathrm{S}}\right\|^{2} \operatorname{Sin}(\beta-\alpha)$ and mark the point Cs. Join OCs. iii. Step-3: Radius $=\left\|\mathrm{V}_{\mathrm{S}} \\| \mathrm{V}_{\mathrm{R}}\right\| / \mid \mathrm{B}$ Draw the Curve with the radius of sending end circle from centre Cs to the scale. iv. Step-4: Locate point Lon X axis such that OL represents Ps to the scale. Draw perpendicular at L to X axis which cuts the circle at point at N. Join NCs. N is the operating point of the system. Step-5: Complete the triangle ONL which represents power triangle at sending end. data required to draw sending end circle diagram: --2M	8M 1M for each step Diagram 2M	

WINTER - 2018 EXAMINATION

MODEL ANSWER
Subject: Power System Analysis
Subject Code 17510

WINTER - 2018 EXAMINATION

MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

6	a) Ans	Attempt any four: A $132 \mathrm{kV}, 50 \mathrm{~Hz}, 3$ phase transmission line delivers no load at receiving end. Determine MVA rating of shunt reactor having negligible losses to maintain 132 kV at both ends of line. GCE for line are $\mathrm{A}=0.95 \angle 1.4^{0}, \mathrm{~B}=96 \angle 78^{\circ}, \mathrm{C}=0.0015 \angle 90^{\circ}$. Given Data : $V_{R}=132 \mathrm{KV}, V_{s}=132 \mathrm{KV}$ $A=0.95 \angle 1.4, \quad B=96 \angle 78$ $C=1.0015 \angle 90$ No load $\therefore Q_{R}=0$ MVA rating of shunt Reactor $=Q_{S}-Q_{R}---------1 \mathrm{M}$ $\begin{aligned} & Q_{S}=\frac{A V_{s}^{2}}{B} \operatorname{Cos}(\beta-\alpha)-\frac{V_{S} V_{R}}{B} \operatorname{Cos}(\beta+\delta)---1 \mathrm{M} \\ & \quad \frac{-0.95 \times 132^{2}}{96} \operatorname{Cos}(78-1.4)-\frac{132 \times 132}{96} \times \operatorname{Cos}(78+0) \\ & =39.959-37.73 \\ & =2.229 M V A R \\ & \therefore \text { MVA rating of shunt reactor }=\mathbf{2 . 2 2 9} \text { MVAR } \end{aligned}$	$\begin{array}{r} 16 \\ 4 M \end{array}$

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

\begin{tabular}{|c|c|}
\hline b)

Ans \& | A generator rated at $30 \mathrm{MVA}, 11 \mathrm{KV}$ has a reactance of $\mathbf{2 0 \%}$ connected to a 3 -phase, $50 \mathrm{MVA}, 11 / 132 \mathrm{kV}, \Delta-\mathrm{Y}$ transformer with $X=15 \%$. calculate its p.u. reactance of generator and transformer for a base of 50 MVA and 10 kV . |
| :--- |
| Given Base MVA $=\mathbf{5 0 M V A}$ |
| Base KV $=10 \mathrm{KV}$ for Gen. and transformer $\angle \mathrm{V}$ $X_{\text {pu new }}=X_{\text {pu old }} \quad \mathrm{x} \frac{\text { MVA new }}{\text { MVA old }} \mathbf{x}\left(\frac{\text { KV old }}{\text { KV new }}\right)^{2} \quad 2 \mathrm{M}$ $\begin{aligned} X_{p u G e n} & =0.2 \times \frac{50}{30} \times\left(\frac{11}{10}\right)^{2} \\ & =0.403 \mathrm{pu} \end{aligned}$ |

\hline \[
$$
\begin{gathered}
\text { c) } \\
\text { Ans }
\end{gathered}
$$

\] \& | Derive the expression for flux linkages at an isolated current carrying conductor due to internal flux only |
| :--- |
| Figure Shows the cross-section of a long cylindrical conductor of radius r carrying a Sinusoidal current of r.m.s. value I. The magnetic lines of flux are concentric with the Conductor. |

\hline
\end{tabular}

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis

Subject Code 17510
Let, the field intensity at a distance x meters from the centre of the conductor be $\mathrm{H} x$.
Since the field is symmetrical, $\mathrm{H} x$ is constant for all point equi distant from the centre. If $\mathrm{I} x$ is the current enclosed upto distances x, then. \qquad .(1M)
$\emptyset H_{x} . d l=I_{x}$
or $2 \pi x H_{x}=I_{x}$
For finding the value of $\mathrm{I} x$, the current is assumed to be uniformly distributed over the cross-section of the conductor. Then
$I_{x}=\left(\frac{\pi x^{2}}{\pi r^{2}}\right) \mathrm{I}=\left(\frac{x^{2}}{r^{2}}\right) \mathrm{I}$ \qquad
\qquad ..(1M)
From equation (ii) \& (iii)
$H_{x}=\frac{\mathrm{I} x}{2 \pi r^{2}} \mathrm{AT} / \mathrm{m}$
The flux density $\mathrm{B} x$ at a distance x from the centre is
$\mathrm{B} x=\mu H_{x}=\frac{\mu I_{x}}{2 \pi r^{2}} \omega \mathrm{~b} / \mathrm{m}^{2}$.
(v).

For finding flux linkages, a tabular element of thickness $\mathrm{d} x$ may be considered. The cross-sectional area of the element, normal to the flux line is $\mathrm{d} x$ times the axial length. The flux per meter length is

$$
\mathrm{d} \emptyset=\frac{\mu I_{x}}{2 \pi r^{2}} \mathrm{~d} x \omega \mathrm{~b} / \mathrm{m}
$$

A flux line positioned at x links with $\frac{\pi x^{2}}{\pi r^{2}}$ of the total current. Thus the flux linkage
for flux $\mathrm{d} \varnothing$ is given by

$$
\begin{align*}
& \mathrm{d} \Psi=\frac{\pi x^{2}}{\pi r^{2}} \cdot \mathrm{~d} \emptyset \\
& =\frac{\mu I_{x}^{3}}{2 \pi r^{4}} \mathrm{~d} x \omega \mathrm{~b}-\mathrm{T} / \mathrm{m} . \tag{vi}
\end{align*}
$$

For computing the total internal flux linkages Ψ int we integrate equation (vi) from
The centre to surface of the conductor. r

$$
\begin{equation*}
\Psi \mathrm{int}=\int \frac{\mu \mathrm{I} x^{3}}{2 \pi r^{4}} d x=\frac{\mu \mathrm{I}}{8 \pi} \omega \mathrm{~b}-\mathrm{T} / \mathrm{m} . \tag{1M}
\end{equation*}
$$

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Power System Analysis
Subject Code 17510

d) Ans	State the importance of real power and reactive power in modern power system. 1Rating of generator, transformer depends on Real power flow in transmission line. 2. Transmission line performance is calculated by complex power flow. 3. Power loss in system is considered in terms of real power. 4. Voltage profile at receiving end depends on reactive power flow. If reactive power is balance, $\mathrm{Q}_{\mathrm{S}}=\mathrm{Q}_{\mathrm{R}}$, receiving voltage remains constant.	4M Each point 1M
e)	A medium transmission line of $3 \phi, 132 \mathrm{kV}, 50 \mathrm{~Hz}$ have series impedance of $(20+\mathrm{j} 50) \Omega$ and shunt admittance of $3.14 \times 10-4$ siemens per phase. Determine A, B, C, D constants of the line considering nominal ' π ' network. $\begin{aligned} & Z=(20+j 50) \Omega \\ & Y=3.14 \times 10^{-4} \angle 90^{0} \end{aligned}$ for Nominal π - circuit	$\mathbf{4 M}$ Each constant 1M

