11819

Hours / 100 Marks

Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data, if necessary.
 - (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any TEN of the following:

20

a) Solve
$$\begin{vmatrix} x & 2 \\ 8 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix}$$

b) Find
$$x$$
, if $\begin{vmatrix} 3 & 4 & 3 \\ 5 & x & x \\ 1 & 3 & 2 \end{vmatrix} = 0$

c) If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 1 \\ 0 & -2 \end{bmatrix}$ find $|A + B|$

d) If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$ find $3A - 2B$.

e) Resolve into partial fractions:
$$\frac{1}{x^2 - x}$$

f) Resolve into partial fractions:
$$\frac{x}{x^2 + 2x - 3}$$

16

- g) Find $\sin \alpha$ if $\tan \left(\frac{\alpha}{2}\right) = \frac{1}{\sqrt{3}}$
- h) Show that $\tan 2A = \frac{2\tan A}{1 \tan^2 A}$
- i) Define
 - (i) Compound angle
 - (ii) Allied angle
- j) If $2 \sin 40 \cos 10 = \sin A + \sin B$ find A, B.
- k) Evaluate $\tan \left[2 \tan^{-1} \left(\frac{1}{5} \right) \right]$
- 1) Show that $\frac{\sin 19 + \cos 11}{\cos 19 \sin 11} = \sqrt{3}$
- m) Find the acute angle between the lines y = 5x + 6 and y = x

[2]

n) Find the slope and y intercept of the line 3x - 4y + 5 = 0

2. Solve any FOUR of the following:

- a) Find y, using Cramers rule, x+y+z=6, 2x+y-2z=-2, x+y-3z=-6
- b) If $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ show that A satisfies the matrix equation $A^2 3A 2I = 0$, where I is the identity matrix.
- c) If $A = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 1 & 1 \end{bmatrix}$ show that the matrix

AB is a non-singular.

- d) Resolve into partial fraction: $\frac{2x+3}{x^2(x-1)}$
- e) If $A = \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ verify $(AB)^T = B^T A^T$

17105

[3]

Marks

f) Solve by determinant method.

$$\frac{2}{x-1} + \frac{3}{y-3} = 5$$
, $\frac{3}{x-1} - \frac{4}{y-3} = -1$

3. Solve any FOUR of the following:

16

- a) Resolve into partial fractions: $\frac{x+3}{(x^2-1)(x+5)}$
- b) Resolve into partial fractions: $\frac{x-5}{x^3+x^2-6x}$
- c) Resolve into partial fractions: $\frac{x^4}{x^3+1}$
- d) Find x and y satisfying the matrix equation

$$\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x & y & 3 \\ 3 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 0 & 7 \\ 9 & 4 & 13 \end{bmatrix}$$

- e) Using matrix inversion method, solve the equations 5x + y = 13, 3x + y = 5
- f) If $A = \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$ verify that (AB)C = A(BC)

4. Solve any **FOUR** of the following:

16

- a) In any triangle ABC Prove that: tan 3A - tan 2A - tan A = tan 3A tan 2A tan A
- b) Show that cos(A+B) = cosA cosB sinA sinB.
- c) Show that $\frac{\sin A + 2\sin 2A + \sin 3A}{\cos A + 2\cos 2A + \cos 3A} = \tan 2A$
- d) Show that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$
- e) Show that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$
- f) If x and y are positive then show that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$ if 1-xy > 0

P.T.O.

17105 [4]

1/103	[4]	
	Marks	5
5.	Solve any <u>FOUR</u> of the following:)
a)	Show that in a traingle	
	$\tan 75^{\circ} + \tan 65^{\circ} + \tan 40^{\circ} = \tan 75^{\circ} \tan 65^{\circ} \tan 40^{\circ}$	
b)	If $\tan\left(\frac{\theta}{2}\right) = \frac{4}{5}$, find the value of $3\tan\theta - 7\sin\theta$.	
c)	Show that $\cos 3A = 4\cos^3 A - 3\cos A$.	
d)	Show that $\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) - \tan^{-1}\left(\frac{8}{19}\right) = \frac{\pi}{4}$	
e)	Show that $\frac{\sin 7x + \sin x}{\cos 5x - \cos 3x} = \sin 2x - \cos 2x \cot 2x$	
f)	Show that $sin(A+B) sin(A-B) = sin^2A - sin^2B$	
6.	Solve any <u>FOUR</u> of the following:	ĺ
a)	Find the acute angle between the lines	
	3x - y = 4, $2x + y = 3$	
b)	If m_1 and m_2 are slopes of the two lines, then show that the	
	acute angle between two lines is $\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
c)	Show that the lines $2x + 3y - 1 = 0$, $3x - 2y + 6 = 0$ are perpendicular.	
d)	Find the equation of a line passing the point $(2, 5)$ and the point of intersection of lines $x + y = 0$ and $2x - y = 9$	
e)	Find perpendicular distance between the parallel lines	
	5x - 12y + 1 = 0 and $10x = 24y + 1$	
f)	Find the equation of the line passing through the point of intersection of the line $2x + 3y = 13$, $5x - y = 7$ and perpendicular to $3x - y + 7 = 0$	