16117

3 Hours / 100 Marks
Seat No. \square
Instructions: (1) All Questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any TEN of the following :

(a) \quad Find x if $\left|\begin{array}{lll}4 & 3 & 9 \\ 3 & 2 & 7 \\ 1 & 4 & x\end{array}\right|=0$.
(b) If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 7\end{array}\right], B=\left[\begin{array}{rr}1 & 3 \\ -2 & 5\end{array}\right]$, find $2 A+3 B-5 I$, where I is unit matrix of order two.
(c) If $A=\left[\begin{array}{rr}2 & 4 \\ -1 & -2\end{array}\right]$, show that A^{2} is null matrix.
(d) Resolve into partial fraction: $\frac{1}{x(x+1)}$.
(e) Prove that $\cos 2 \theta=2 \cos ^{2} \theta-1$.
(f) Find $\sin \alpha$ if $\tan \left(\frac{\alpha}{2}\right)=\frac{1}{\sqrt{3}}$.
(g) Without using calculator find the value of $\sin \left(-765^{\circ}\right)$.
(h) Find the principal value of $\sec \left[\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$.
P.T.O.
(i) Define compound angle.
(j) Prove that the lines $3 x+2 y=5$ and $2 x-3 y=6$ are perpendicular.
(k) Find range and coefficient of range of following data :

50, 90, 120, 40, 180, 200, 80.
(l) Find AB if $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & -5 \\ 0 & 1\end{array}\right]$
2. Attempt any FOUR of the following :
(a) Solve the following equations using Cramer's Rule :

$$
2 x+3 y=5 ; y-3 z=-2 ; z+3 x=4
$$

(b) If $\mathrm{A}+\mathrm{I}=\left[\begin{array}{ccc}1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1\end{array}\right]$, obtain the matrix $(\mathrm{A}+\mathrm{I})(\mathrm{A}-\mathrm{I})$.
(c) Show that matrix $A=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$ is an orthogonal matrix.
(d) Find the inverse of the Matrix;

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \text { by adjoint method. }
$$

(e) Resolve into partial fraction: $\frac{x^{3}+x}{x^{2}-4}$.
(f) Resolve into partial fraction : $\frac{3 x-1}{(x-4)(2 x+1)(x-1)}$.

3. Attempt any FOUR of the following :

(a) Using Matrix inversion method solve the system of equations : $x+y+z=3$, $3 x-2 y+3 z=4,5 x+5 y+z=11$.
(b) Resolve into partial fractions: $\frac{\tan \theta}{(\tan \theta+2)(\tan \theta+3)}$.
(c) Resolve into partial fraction :
$\frac{x^{2}+23 x}{(x+3)\left(x^{2}+1\right)}$.
(d) Prove that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}$.
(e) If $\tan \mathrm{A}=\frac{1}{3}, \tan \mathrm{~B}=\frac{1}{4}$, where $0<\mathrm{A}<\pi / 2, \pi<\mathrm{B}<3 \pi / 2$, find $\sin (\mathrm{A}+\mathrm{B})$.
(f) Without using calculator, find the value of :

$$
\tan \left(585^{\circ}\right) \cdot \cot \left(-495^{\circ}\right)-\cot \left(405^{\circ}\right) \cdot \tan \left(-495^{\circ}\right)
$$

4. Attempt any FOUR of the following :
(a) Prove that:

$$
\sin (A-B)=\sin A \cos B-\cos A \sin B .
$$

(b) Prove that : $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$.
(c) If $\tan (x+y)=\frac{1}{2}$ and $\tan (x-y)=\frac{1}{3}$, find (i) $\tan 2 x$, (ii) $\tan 2 y$.
(d) Prove that: $: \frac{\sin \mathrm{A}+\sin 2 \mathrm{~A}+\sin 3 \mathrm{~A}+\sin 4 \mathrm{~A}}{\cos \mathrm{~A}+\cos 2 \mathrm{~A}+\cos 3 \mathrm{~A}+\cos 4 \mathrm{~A}}=\tan \left(\frac{5 \mathrm{~A}}{2}\right)$.
(e) Prove that : $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$.
(f) Prove that : $\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}$.
5. Attempt any FOUR of the following :
(a) Prove $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ if $1-x y>0$.
(b) Prove that $\sin 10^{\circ} \cdot \sin 30^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ}=\frac{1}{16}$
(c) Prove that $\sin \mathrm{C}-\sin \mathrm{D}=2 \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \sin \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$.
(d) Show that the distance between two parallel lines $\mathrm{a} x+\mathrm{by}+\mathrm{C}_{1}=0$ \& $a x+b y+C_{2}=0$ is given by $d=\left|\frac{C_{2}-C_{1}}{\sqrt{a^{2}+b^{2}}}\right|$.
(e) Find the length of perpendicular on the line $3 x+4 y-5=0$ from (3, 4).
(f) Find the equation of the line passing through the point of intersection of lines $2 x+3 y=13,5 x-y-7=0$ and perpendicular to the line $3 x-2 y+7=0$.
P.T.O.
6. Attempt any FOUR of the following :
(a) Find the equation of line passing through the point of intersection of lines $x+\mathrm{y}=0$ and $2 x-\mathrm{y}=9$ and a point $(2,5)$.
(b) Find the mean deviation from median of the following distribution :

Weight (in gms)	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$	$40-45$
No. of items	7	12	16	25	19	15	6

(c) Calculate : (i) Standard deviation, (ii) Co-efficient of variation from the following data :

Rainfall	$70-80$	$80-90$	$90-100$	$100-110$	$110-120$	$120-130$	$130-140$	$140-150$
No. of places	06	07	12	19	21	18	11	06

(d) The weights of 100 students are given by the following distribution :

Weight above or equal to	36	41	46	51	56	61	66	71
No. of Students	100	96	79	56	28	11	5	2

Calculate : (i) Mean, (ii) Variance of the data using step deviation method. No student has weight above 75 kg .
(e) In the two factories A \& B engaged in the same industry, the average weekly wages \& standard deviation are as follows :

Factories	Average wages	Standard deviation
A	34.5	5.0
B	28.5	4.5

Which factory is more consistent ?

