WINTER - 2016 Examinations

Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try toassess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner maygive credit for any equivalent figure/figures drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept

WINTER - 2016 Examinations
 Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

1 Solve any TEN of the following:
20
1a) Write alternating voltage and current equations.
Ans.
Alternating Voltage: $e=E_{m} \sin \theta$ OR $e=E_{m} \sin \omega \mathrm{t} \quad 1$ mark
Alternating Current: $i=I_{m} \sin \Theta O R i=I_{m} \sin \omega t \quad 1$ mark
1 b) Define: i) Amplitude ii) cycle.
Ans:
i) Amplitude: A maximum value or peak value attained by an alternating quantity during positive or negative half cycle is called as its amplitude.
ii) Cycle: - A complete set of variation in magnitude of an alternating quantity which is repeated at regular interval of time is called as cycle.

OR

A complete set of positive and negative values of an alternating quantity which is repeated at regular interval of time is called a cycle.
1c) Define:
i) Impedance
ii) Inductive reactance.

Ans:

i) Impedance: The impedance (Z) of the circuit is defined as the total opposition of the circuit to the alternating current flowing through it.

OR

It is combined effect produced by the resistance, inductive reactance and capacitive reactance in the AC circuit.
ii) Inductive reactance:- The opposition offered by the inductance of a circuit to the flow of an alternating current is called an inductive reactance.

1 mark
$1 \mathrm{~d})$ Draw power triangle of for R-L series circuit.
Ans:-

1 e) Define with unit Admittance.

Ans:

Admittance is defined as the ability of the circuit to carry (admit) alternating current through it.

OR

It is the reciprocal of impedance Z . i.e Admittance $\mathrm{Y}=1 / \mathrm{Z}$.
Unit: Its unit is siemen (S) or mho (J).

1f) Define quality factor. Give equation of it.

Ans:

Quality Factor:

The quality factor basically represents a figure of merit of a component (practical inductor or capacitor) or a complete circuit. It is a dimensionless number and defined

WINTER - 2016 Examinations

Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

as: $Q=2 \pi\left[\frac{\text { Maximum energy stored }}{\text { Energy dissipated per cycle }}\right]$

OR

In series circuit it is defined as voltage magnification in the circuit at resonance

OR

It is also defined as the ratio of the reactive power of either the inductor or the capacitor to the average power of the resistor.

$$
Q \text { factor }=\text { voltage magnification }=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

OR
In parallel circuit it is defined as equal to the current magnification in the circuit at resonance

OR

The quality factor or Q -factor of parallel circuit is defined as the ratio of the current circulating between two branches of the circuit to the current taken by the parallel circuit from the source.

$$
Q \text { factor }=\text { current magnification }=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

1 g) Give emf equations for three phase a. c. circuit.
Ans:
The equation of three emfs can be represented by

$$
\begin{aligned}
& e_{a}=E_{m} \sin \omega \mathrm{t} \\
& e_{b}=E_{m} \sin \left(\omega \mathrm{t}-120^{0}\right) \\
& e_{c}=E_{m} \sin \left(\omega \mathrm{t}-240^{0}\right)
\end{aligned}
$$

1 mark for e_{a}
1 mark for e_{b} and e_{c}

1 mark
1 mark

1i) Give equations of Delta to Star transformations.
Ans:
Equations of Delta to star transformation:

(a) Delta Circuit

(b) Star Circuit
(b) Star Circuit

1mark for definition

1 mark for equation
$1 \mathrm{~h})$ Define line voltage and phase voltage.

Ans:

Line Voltage is defined as the potential difference or voltage between any two live lines of three phase system. Line voltages: V_{RY} or V_{YB} or V_{BR}
Phase Voltage is defined as the potential difference between any one live line (phase) and neutral of three phase system. Phase voltages: V_{RN} or V_{YN} or V_{BN}

WINTER - 2016 Examinations
 Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

$$
\begin{aligned}
\mathrm{R}_{1} & =\frac{\mathrm{R}_{12} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \\
\mathrm{R}_{2} & =\frac{\mathrm{R}_{12} \mathrm{R}_{23}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \\
\mathrm{R}_{3} & =\frac{\mathrm{R}_{23} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}}
\end{aligned}
$$

1j) State Maximum power transfer theorem.

Ans:

Maximum Power transfer theorem :

"It states that, the maximum amount of power is delivered to the load resistance when the load resistance is equal to the internal resistance of the source or Thevenin's equivalent resistance of the network supplying the power to load."
According to this theorem, condition for maximum power to be transferred to load is when $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}$, where $\mathrm{R}_{\mathrm{TH}}=$ Thevenin's equivalent resistance of the network across R_{L}
1 k) State Norton's theorem.

Ans:

Norton's theorem:

It states that, any linear, active, resistive network containing one or more voltage and/or current source can be replaced by an equivalent circuit containing a single current source and equivalent conductance (resistance across the current source).
The equivalent current source (Norton's source) I_{N} is the current through the short circuited terminals of the load. The equivalent conductance G_{N} (or R_{N}) is the conductance (or resistance) seen between the load terminals while looking back into the network with the load removed and internal sources replaced by their internal resistances.

If R_{L} is load resistance then current through it is $I_{L}=I_{N} R_{N} /\left(R_{N}+R_{L}\right)$.
11) \quad State the meaning of $t=0$ - and $t=0+$

Ans:

1) $t=0-$ is the instant just before the switching instant $t=0$
2) $t=0+$ is the instant just after the switching instant $t=0$

2 Attempt any FOUR of the following:

1 mark each
Correct statement 2 marks

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2005 Certified)

WINTER - 2016 Examinations
 Model Answer
 Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

2a) Define: 1) RMS value 2) Average value

Ans:

The RMS value is the Root Mean Square value. It is defined as the square root of the mean value of the squares of the alternating quantity over one cycle.

OR

For an alternating current, the RMS value is defined as that value of steady current (DC) which produces the same power or heat as is produced by the alternating current during the same time under the same conditions.

The Average value is defined as the arithmetical average or mean of all the values of an alternating quantity over one cycle.

OR

For an alternating current, the average value is defined as that value of steady current (DC) which transfers the same charge as is transferred by the alternating current during the same time under the same conditions.
2b) Draw circuit diagram, phasor diagram, waveform of voltage and current for R-L series circuit.

Ans:

Circuit diagrm:

Phasor diagram :

2 marks

2 marks

1 mark for circuit diagram

1 mark for phasor diagram

2 marks for waveforms

2c) Give comparison of series and parallel circuit.

Ans:

Sr. No.	Series Circuit	Parallel Circuit
1		

WINTER - 2016 Examinations
 Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

2	A series circuit is that circuit in which the current flowing through each circuit element is same.	A parallel circuit is that circuit in which the voltage across each circuit element is same.
3	The sum of the voltage drops in series resistances is equal to the applied voltage V . $\therefore \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$	The sum of the currents in parallel resistances is equal to the total circuit current I. $\therefore \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
4	The effective resistance R of the series circuit is the sum of the resistance connected in series. $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots$	The reciprocal of effective resistance R of the parallel circuit is the sum of the reciprocals of the resistances connected in parallel. $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\cdots$
5	For series R-L-C circuit, the resonance frequency is, $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$	For parallel R-L-C circuit, the resonance frequency is, $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$
6	At resonance, the series RLC circuit behaves as purely resistive circuit.	At resonance, the parallel RLC circuit behaves as purely resistive circuit.
7	At resonance, the series RLC circuit power factor is unity.	At resonance, the Parallel RLC circuit power factor is unity.
8	At resonance, the series RLC circuit offers minimum total impedance $\mathrm{Z}=\mathrm{R}$	At resonance, the parallel RLC circuit offers maximum total impedance $\mathrm{Z}=\mathrm{L} / \mathrm{CR}$
9	At resonance, series RLC circuit draws maximum current from source, $I=(V / R)$	At resonance, parallel RLC circuit draws minimum current from source, $\left.I=\frac{V}{[L / C R}\right]$
10	At resonance, in series RLC circuit, voltage magnification takes place.	At resonance, in parallel RLC circuit, current magnification takes place.
11	The Q-factor for series resonant circuit is $Q=\frac{1}{R} \sqrt{\frac{L}{C}}$	The Q-factor for parallel resonant circuit is, $Q=\frac{1}{R} \sqrt{\frac{L}{C}}$
12	Series RLC resonant circuit is Accepter circuit.	Parallel RLC resonant circuit is Rejecter circuit.

Define: 1) Balanced load
 2) Unbalanced load.

Ans:
Balanced Load: Balanced three phase load is defined as star or delta connection of three equal impedances having equal real parts and equal imaginary parts.

1 mark each (any four)
e.g Three impedances each having resistance of 5ohm and inductive reactance of 15 ohm connected in star or delta.

WINTER - 2016 Examinations

Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

Unbalanced Load: Unbalanced three phase load is defined as star or delta connection of three unequal impedances having unequal real parts or unequal imaginary parts.

OR

If impedances of one or more legs of a three phase load are different from other legs in respect of magnitude and their nature, it is said to be an unbalanced three phase load. i.e. magnitude of voltages and resulting currents are different either in phase or magnitude or both phase \& magnitude.
2e) State why source transformation is needed. Give three steps to convert voltage source into current source.

Ans:

Need:

Source transformation is needed to simplify a circuit solution and find key when circuit with mixed sources exist.
Steps to convert voltage source into current source:-

1) Calculate equivalent current source as the short circuit current through the voltage source terminals: $(\mathrm{I}=\mathrm{V} / \mathrm{r})$
2) The Shunt Resistance of current source: $($ Rsh $=r)$
3) Draw the equivalent source.

According to ohm's law; the relationship between voltage and current, is given by $\mathrm{v}=\mathrm{i} . \mathrm{R}$
This equation is time independent equation as R is a constant. Thus the current changes instantaneously as soon as the voltage changes or vice versa. That means initial condition at time $t=0$ is same as that exists then. Hence if at $t=0$, voltage v is applied the initial current will be v / R at $t=0+$.
Thus at any time it acts like resistor only, with no change in condition.

ii) Inductor:

The current through an inductor cannot change instantly. If the inductor current is zero just before switching, then whatever may be the applied voltage, just after switching the inductor current will remain zero. i.e the inductor must be acting as open-circuit at instant $t=0$. If the inductor current is I_{0} before switching, then just after switching the inductor current will remain same as I_{0}, and having stored energy

WINTER - 2016 Examinations
 Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS
hence it is represented by a current source of value I_{0} in parallel with open circuit.

iii) Capacitor:

The voltage across capacitor cannot change instantly. If the capacitor voltage is
zero initially just before switching, then whatever may be the current flowing, just after switching the capacitor voltage will remain zero. i.e the capacitor must be acting as short-circuit at instant $\mathrm{t}=0$. If capacitor is previously charged to some voltage V_{0}, then also after switching at $\mathrm{t}=0$, the voltage across capacitor remains same V_{0}. Since the energy is stored in the capacitor, it is represented by a voltage source V_{0} in series with short-circuit.

Element and condition at $\mathrm{t}=0^{-}$	Initial Condition at $\mathrm{t}=0^{+}$
~~~~~~	~~~~~~~
-	$0$
$\stackrel{\mathrm{I}_{0}}{\longrightarrow} \mathrm{~L}$	
	$\xrightarrow{\text { S.C. }}$
$\stackrel{\text { Cl}}{\mathrm{v}_{0}=\frac{\mathrm{q}_{0}}{\mathrm{C}}}$	

3 Attempt any FOUR of the following:
3 a) An a.c series circuit has a resistance of 10 ohm, an inductance of 0.2 H and a capacitance of $60 \mu \mathrm{~F}$. Calculate: a) resonant frequency b) curent c) power at resonance. Applied voltage is 200 V .

## Ans:

a) Resonant Frequency:

$$
\begin{aligned}
\text { Resonant frequency } f_{0} & =\frac{1}{(2 \pi \sqrt{L C})} \\
\therefore f_{0} & =\frac{1}{2 \pi \sqrt{ }\left(0.2 \times 60 \times 10^{-6}\right)}=45.944 \mathrm{~Hz}=46 \mathrm{~Hz}
\end{aligned}
$$

b) Current:

At resonance $\mathrm{R}=\mathrm{Z}$
$\therefore$ Current $I=\frac{V}{Z}=\frac{200}{10}=20 \mathrm{amp}$
c) Power at resonance:

At Resonance p. $f=1$

$$
\therefore P=V \times I=200 \times 20=4000 \text { watts or } 4 \mathrm{~kW}
$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2005 Certified)

## WINTER - 2016 Examinations

Model Answer

## Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

3 b) Two impedances given by $Z_{1}=(10+j 5)$ and $Z_{2}=(8+j 6)$ are joined in parallel and connected across a voltage of $\mathrm{V}=200+\mathrm{j} 0$. Calculate the circuit current, its phase and branch currents. Draw the vector diagram.

## Ans:

$V=200+j 0=200 \angle 0^{\circ}$ volt
$Z_{1}=10+j 5=11.18 \angle 26.56^{\circ}$
$Z_{2}=8+j 6=10 \angle 36.87$
Branch 1 current is given by

$$
Y_{1}=\frac{1}{Z_{1}}=\frac{1}{11.18 \angle 26.56^{\circ}}=0.08945 \angle-
$$


$26.56^{\circ}=0.08-j 0.04 \mathrm{mho}$

$$
I_{1}=V \times Y_{1}=200(0.08-j 0.04)=16-j 8=17.88 \angle-26.56^{\circ}
$$

OR $\quad I_{1}=\frac{V}{Z_{1}}=\frac{200 \angle 0}{11.18 \angle 26.56}=17.88 \angle-26.56^{\circ} \mathrm{amp}$
Branch 2 current is given by

$$
Y_{2}=\frac{1}{Z_{2}}=\frac{1}{10 \angle 36.87^{\circ}}=0.1 \angle-36.87^{\circ}=0.08-j 0.06 \mathrm{mho}
$$

$$
I_{2}=V \times Y_{2}=200(0.08-j 0.06)=16-j 12=20 \angle-36.87^{\circ}
$$

$$
\text { OR } I_{2}=\frac{V}{z_{2}}=\frac{200 \angle 0}{10 \angle 36.86}=20 \angle-36.86^{\circ} \text { amp }
$$

$I=I_{1}+I_{2}=16-j 8+16-j 12=32-j 20=37.74 \angle-32^{\circ} \mathrm{amp}$
Vector Diagram :


V

1 mark

1 mark for each of any four

## WINTER - 2016 Examinations

Model Answer

## Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

$3 \mathrm{~d})$ Find the ammeter current in fig.(1) by using mesh analysis.


## Ans:

## Mesh Analysis:

i) There are two meshes in the network.
ii) Mesh currents $I_{1}$ and $I_{2}$ are marked anti-clockwise as shown.
iii) By tracing mesh 1 clockwise, KVL equation is,
$2-2\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)-10 \mathrm{I}_{1}=0$
$\therefore 2-12 \mathrm{I}_{1}+2 \mathrm{I}_{2}=0$
$\therefore 12 \mathrm{I}_{1}-2 \mathrm{I}_{2}=2$ $\qquad$
By tracing mesh 2 clockwise, KVL equation is,


1 mark for
Eq. (1)
$4-10 \mathrm{I}_{2}-2\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)=0$
$4-12 \mathrm{I}_{2}+2 \mathrm{I}_{1}=0$
$\therefore 2 \mathrm{I}_{1}-12 \mathrm{I}_{2}=-4$
iv) Expressing eq.(1) and (2) in matrix form,
$\left[\begin{array}{cc}12 & -2 \\ 2 & -12\end{array}\right]\left[\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{I}_{2}\end{array}\right]=\left[\begin{array}{c}2 \\ -4\end{array}\right]$
1 mark for
Eq. (2)
$\therefore \Delta=\left|\begin{array}{cc}12 & -2 \\ 2 & -12\end{array}\right|=-144-(-4)=-140$
By Cramer's rule,
$\mathrm{I}_{1}=\frac{\left|\begin{array}{cc}2 & -2 \\ -4 & -12\end{array}\right|}{\Delta}=\frac{(2 \times-12)-(-4 \times-2)}{-140}=\frac{-24-8}{-140}=\mathbf{0 . 2 2 8 6 A}$
$\mathrm{I}_{2}=\frac{\left|\begin{array}{cc}12 & 2 \\ 2 & -4\end{array}\right|}{\Delta}=\frac{(12 \times-4)-(2 \times 2)}{-140}=\frac{-48-4}{-140}=\mathbf{0 . 3 7 1 4} \mathbf{~ A}$
v) The current flowing through ammeter is,
$\mathrm{I}=\mathrm{I}_{2}-\mathrm{I}_{1}=0.3714-0.2286=\mathbf{0 . 1 4 2 8} \mathbf{A}$ in the direction of $\mathbf{I}_{\mathbf{2}}$
3 e) Find the Norton equivalent impedance for the active linear network shown in fig.(2).


Ans:
Norton equivalent impedance:

## WINTER - 2016 Examinations

Model Answer

## Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

Norton's equivalent impedance is the impedance seen between the terminals A-B while looking back into the network with all sources are replaced by their internal impedances i.e voltage source by short circuit and current source by open circuit.
It is seen that resistances $15 \Omega$ and $10 \Omega$ are in parallel. Their resultant resistance is, $15 \| 10=\frac{(15)(10)}{(15+10)}=6 \Omega$
Now three resistances $6 \Omega, 6 \Omega$ and $4 \Omega$ appears in series. Their equivalent resistance is given by: $6+6+4=16 \Omega$
Thus, Norton's equivalent resistance $\mathrm{R}_{\mathrm{N}}=16 \Omega$


1 mark for diagram

1 mark for source replacement

1 mark for 15||10

1 mark for final answer

## WINTER - 2016 Examinations

Model Answer
Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

Element and condition at $\mathbf{t}=\mathbf{0}^{-}$	Final Condition at $t=\infty$
$\stackrel{R}{\sim}$	
$\stackrel{\mathrm{L}}{\mathrm{~mm}^{2}}$	S.C.
$\stackrel{I_{0}}{\xrightarrow{I_{0}}}$	
$\begin{gathered} \stackrel{C}{-N_{+}} \\ v_{0}=\frac{q_{0}}{C} \end{gathered}$	

4 Attempt any FOUR of the following:
4a) An alternating voltage given by $\mathrm{e}=150 \sin 100 \pi \mathrm{t}$ is applied to a circuit which offers a resistance of 50 ohms. Find r.m.s and average value of current and supply frequency.

## Ans:-

The circuit current is given by,
$i=\frac{e}{R}=\frac{150 \sin 100 \pi \mathrm{t}}{50}=3 \sin 100 \pi \mathrm{t}$
Comparing given equation with standard equation $i=I_{m} \sin 2 \pi f t$

$$
\begin{aligned}
& I_{m}=\frac{V_{m}}{R}=\frac{150}{50}=3 \text { A } \\
& \therefore \quad \mathrm{I}_{\mathrm{rms}}=\frac{I m}{\sqrt{2}}=\frac{3}{\sqrt{2}}=2.12 \mathrm{~A} \\
\therefore & \mathrm{I}_{\mathrm{av}}=\frac{2 I_{m}}{\pi}=\frac{3}{\pi}=1.909 \mathrm{~A} \\
\therefore & 2 \pi f t=100 \pi t \quad \therefore \quad 2 f=100 \\
\therefore & f=\frac{100}{2}=50 \mathrm{~Hz}
\end{aligned}
$$

$4 \mathrm{~b}) \quad$ A 50 Hz voltage of 230 V effective value is impressed on an inductance of 0.265 H .
i) Write the time equation for the voltage and resulting current. Let the zero axis of the voltage wave be at $\mathrm{t}=0$.
ii) Show the voltage and current on a phasor diagram.

$$
\begin{aligned}
& \text { Ans:- } \\
& \quad V m=230 \times \sqrt{2}=325.27 \mathrm{~V} \\
& \omega=2 \pi f=2 \pi x 50=314.2 \mathrm{rad} / \mathrm{sec} \\
& X L=2 \pi f L=2 \pi \times 50 \times 0.265=83.25 \Omega
\end{aligned}
$$

1 mark for preliminary terms

## WINTER - 2016 Examinations

Model Answer

## Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

$$
\begin{array}{ll}
\text { Im }=\frac{V m}{X L}=\frac{325.27}{83.25}=3.9 \mathrm{~A} & \\
v=325.27 \sin (314.2 t) V & 1 \text { mark } \\
i=3.9 \sin \left(314.2 t-90^{\circ}\right) A & 1 \text { mark } \\
\text { Irms }=0.707 \times 3.9=2.75 \mathrm{~A} & \\
& \mathrm{~V}=230 \mathrm{~V} \\
& \\
&
\end{array}
$$

2 marks

$$
\therefore f_{r}=\frac{1}{2 \pi \sqrt{ }\left(0.15 \times 12 \times 10^{-6}\right)}=118.63 \cong 119 \mathrm{~Hz}
$$

b) At resonance $R=Z=12 \Omega$

$$
\therefore \quad I=\frac{V}{Z}=\frac{240}{12}=20 \mathrm{amp}
$$

4 d) A voltage of $200 \angle 53^{\circ}$ is applied across two impedances in parallel. The values of impedances are $(12+\mathrm{j} 16)$ and $(10-\mathrm{j} 20)$. Determine the $\mathrm{kVA}, \mathrm{kVAR}$ and kW in each branch and power factor of the whole circuit.
Ans:

$$
\begin{aligned}
V=200 & \angle 53^{0} V \\
Z_{1} & =12+j 16=20 \angle 53.13^{\circ} \\
Z_{2} & =10-j 20=22.36 \angle-63.43^{\circ} \\
I_{1} & =\frac{V}{Z_{1}}=\frac{200 \angle 53^{\circ}}{20 \angle 53.13^{\circ}}=10 \angle-0.13^{\circ}=10-\mathrm{j} 0.022 \mathrm{~A}
\end{aligned}
$$

Angle between V and $\mathrm{I}_{1}$ is $\{53-(-0.13)\}=53.13^{\circ}$

$$
I_{2}=\frac{V}{Z_{2}}=\frac{200 \angle 53^{\circ}}{22.36 \angle-63.43^{\circ}}=8.94 \angle 116.43^{\circ}=-3.98+\mathrm{j} 8 \mathrm{~A}
$$

1 mark for

Angle between V and $\mathrm{I}_{2}$ is $(53-116.43)=-63.43^{\circ}$

## Powers in first branch

Active power: $P_{1}=V I_{1} \cos \emptyset_{1}=200 \times 10 \times \cos \left(53.13^{\circ}\right)$

$$
=1200 \mathrm{watt}=1.2 \mathrm{~kW}
$$

Reactive power: $\quad Q_{1}=V I_{1} \sin \emptyset_{1}=200 \times 10 \times \sin \left(53.13^{\circ}\right)$
1 mark for power in branch 1

Apparent power: $S_{1}=V I_{1}=200 \times 10=2000 \mathrm{VA}=2 \mathrm{kVA}$

## WINTER - 2016 Examinations <br> Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

## Powers in second branch:

$$
\text { Active power: } \quad \begin{aligned}
& P_{2}=V I_{2} \cos \emptyset_{2}=200 \times 8.94 \times \cos \left(-63.43^{\circ}\right) \\
&=799.76 \mathrm{watt}=0.79976 \mathrm{~kW} \\
& \text { Reactive power: } Q_{2}=V I_{2} \sin \emptyset_{2}=200 \times 8.94 \times \sin \left(-63.43^{\circ}\right) \\
&=-1599.17 \mathrm{VAR}=-1.59917 \mathrm{kVAR}(\text { leading })
\end{aligned}
$$

Apparent power: $S_{2}=V I_{2}=200 \times 8.94=1788 \mathrm{VA}=1.788 \mathrm{kVA}$
1 mark for power in branch 2

Circuit total current is,

$$
\therefore \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=6.02+\mathrm{j} 7.978=10 \angle 52.96^{\circ} \mathrm{A}
$$

Angle between V and I is $(53-52.96)=0.04^{\circ}$
P.F. of whole circuit is $\cos (0.04)=0.999999 \cong 1$

4e) Each phase of a delta-connected load comprises a resistor of 50 ohm and capacitor of $50 \mu \mathrm{~F}$ in series. Calculate the line and phase currents when the load is connected to a $440 \mathrm{~V}, 3$ phase 50 Hz supply.
Ans:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}=\frac{1}{2 \times \pi \times 50 \times 50 \times 10^{-6}}=63.66 \Omega \\
& \therefore \mathrm{Z}_{\mathrm{ph}}=(50-\mathrm{j} 63.66) \Omega=80.94 \angle-51.85^{\circ} \Omega
\end{aligned}
$$

For delta-connected load, phase voltage $=$ line voltage $=440 \angle 0^{\circ}$
Phase current is given by,

$$
\therefore I_{p h}=\frac{V_{p h}}{Z_{p h}}=\frac{440 \angle 0^{\circ}}{80.94 \angle-51.85^{\circ}}=5.44 \angle 51.85^{\circ} \mathrm{A}
$$

Line current is given by,

$$
\therefore \mathrm{I}_{\mathrm{L}}=\sqrt{3} . \mathrm{I}_{\mathrm{ph}}=\sqrt{3} \times 5.44=\mathbf{9 . 4 1} \mathrm{amp}
$$

4f) Use Nodal analysis to determine the value of current i in the network of fig. (3).


Figure (3)

## Ans:-

## Nodal Analysis:

i) At node 1 , by KCL,
$-6+\frac{V_{1}}{8}+\frac{V_{1}-V_{2}}{4}+3=0$
$\therefore V_{1}\left[\frac{1}{8}+\frac{1}{4}\right]-V_{2}\left[\frac{1}{4}\right]=3$
$0.375 V_{1}-0.25 V_{2}=3$
ii) At node 2, by KCL,

## WINTER - 2016 Examinations

Model Answer

## Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

$-3+\frac{V_{2}}{6}+\frac{V_{2}-V_{1}}{4}=0$
$\therefore V_{2}\left[\frac{1}{6}+\frac{1}{4}\right]-V_{1}\left[\frac{1}{4}\right]-3=0$
$-0.25 V_{1}+0.42 V_{2}=3$ $\qquad$
iii) Expressing eq.(1) and (2) in matrix form,

$$
\begin{align*}
& {\left[\begin{array}{cc}
0.375 & -0.25 \\
-0.25 & 0.42
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{1} \\
\mathrm{~V}_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]}  \tag{2}\\
& \therefore \Delta=\left|\begin{array}{cc}
0.375 & -0.25 \\
-0.25 & 0.42
\end{array}\right|=0.1575-(0.0625)=0.095
\end{align*}
$$

By Cramer's rule,
$\mathrm{V}_{1}=\frac{\left|\begin{array}{cc}3 & -0.25 \\ 3 & 0.42\end{array}\right|}{\Delta}=\frac{(1.26)-(-0.75)}{0.095}=\frac{2.01}{0.095}=\mathbf{2 1 . 1 6}$ volt
1 mark

Current flowing through $8 \Omega$ is given by,
$i=\frac{V_{1}}{8}=\frac{21.16}{8}=\mathbf{2 . 6 4 5} \mathbf{~ a m p}$ 1 mark
$V_{2}=\frac{\left|\begin{array}{cc}0.375 & 3\end{array}\right|}{\Delta}=\frac{(-0.75)-(1.125)}{0.095}=\frac{-1.875}{0.095}=-19.74$ volt (Optional)
5 Attempt any FOUR of the following:
5 a) A pure inductance allows a current of 10 A to flow from a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find (i) Inductive reactance, ii) Inductance, iii) Power absorbed. Write down the equation for voltage and current.

## Ans:

(i) Inductive reactance:

$$
\begin{aligned}
& I=\frac{V}{X_{L}} \quad \therefore \mathrm{X}_{\mathrm{L}}=\frac{V}{I} \\
& \quad \therefore \mathrm{X}_{\mathrm{L}}=\frac{230}{10}=23 \Omega
\end{aligned}
$$

(ii) Inductance:

$$
L=\frac{X_{L}}{2 \pi f}=\frac{23}{(2 \pi \times 50)}=0.0732 \mathrm{H}
$$

(iii) In case of pure inductance, phase angle between voltage and current is $90^{\circ}$

$$
\therefore \quad \mathrm{P}=\mathrm{VI} \cos \varnothing=230 \times 10 \times \cos 90^{\circ}=0
$$

(iv) Equation for voltage and current:

$$
\begin{aligned}
v & =230 \sqrt{2} \sin (2 \pi f t)=325.27 \sin (2 \pi \times 50 \times t) & & 1 / 2 \text { mark } \\
& =325.27 \sin (314.2 t) & & \\
i & =10 \sqrt{2} \sin \left(\omega t-90^{\circ}\right)=14.14 \sin \left(314.2 t-90^{\circ}\right) & & 1 / 2 \text { mark }
\end{aligned}
$$

5 b ) A two element series circuit is connected across an ac source.
$\mathrm{e}=200 \sqrt{ } 2 \sin \left(\omega \mathrm{t}+20^{\circ}\right) \mathrm{V}$. The current in the circuit then found to be
$\mathrm{i}=10 \sqrt{ } 2 \cos \left(314 \mathrm{t}-25^{\circ}\right) \mathrm{A}$. Determine the parameters of the circuit.

## Ans:

Current equation can be written as

$$
i=10 \sqrt{2} \sin (314 t-25+90)=10 \sqrt{2} \sin \left(314 t+65^{\circ}\right) A
$$

Voltage equation is,

$$
e=200 \sqrt{2} \sin \left(314 t+20^{\circ}\right) V
$$

## WINTER - 2016 Examinations <br> Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS
$\therefore$ Angle between vand i is $20-65=-45^{\circ}$

$$
\therefore p . f=\cos \left(-45^{\circ}\right)=0.707 \text { (leading) }
$$

Since current leads voltage, the circuit is R-C series circuit

$$
\begin{aligned}
& \therefore \mathrm{V}_{\mathrm{m}}=200 \sqrt{2} \mathrm{I}_{\mathrm{m}}=10 \sqrt{2} \quad \therefore \mathrm{Z}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{m}}} \\
& \quad \therefore \mathrm{Z}=\frac{200 \sqrt{2}}{10 \sqrt{2}}=20 \Omega
\end{aligned}
$$

$\therefore$ Resistance $\mathrm{R}=\mathrm{Z} \cos \varnothing=20 \times 0.707=14.1 \Omega$
$\therefore$ Capacitive reactance $\mathrm{X}_{\mathrm{C}}=\mathrm{Z} \sin \emptyset=20 \sin 45=14.1 \Omega$

$$
f=\frac{\omega}{2 \pi}=\frac{314}{2 \pi}=50 \mathrm{~Hz}
$$

Since $\quad X_{c}=\frac{1}{2 \pi f c} \quad \therefore \mathrm{C}=\frac{1}{2 \pi \mathrm{fX}_{\mathrm{c}}}=\frac{1}{2 \pi \mathrm{x} 50 \times 14.1}=225.75 \mu \mathrm{~F}$
$5 \mathrm{c})$ Draw the vector dia. For the circuit shown in fig.(4) indicating the resistance and reactance drops, the terminal voltages $V_{1}$ and $V_{2}$ and current.


Figure (4)

## Ans:-

$$
\begin{aligned}
& \quad X_{L 1}=2 \pi f L_{1}=2 \times \pi \times f \times 0.05=15.71 \Omega \\
& X_{C}=\frac{1}{2 \pi f c}=\frac{1}{2 \pi \times 50 \times 50 \times 10^{-6}}=63.66 \Omega \\
& X_{L 2}=2 \pi f L_{2}=2 \times \pi \times f \times 0.1=31.42 \Omega \\
& \mathrm{Z}_{\mathrm{T}}=10+\mathrm{j} 15.71+20+\mathrm{j} 31.42-\mathrm{j} 63.66 \\
& \therefore \mathrm{Z}_{\mathrm{T}}=30-\mathrm{j} 16.53=34.25 \angle-28.85^{0} \Omega \\
& \quad I=\frac{V}{Z_{T}}=\frac{200}{34.25}=5.84 \mathrm{amp} \\
& \quad V_{R 1}=I R_{1}=58.4 \mathrm{~V} \\
& V_{L 1}=I X_{L 1}=91.74 \mathrm{~V} \\
& V_{R 2}=I R_{2}=116.8 \mathrm{~V} \\
& V_{L 2}=I X_{L 2}=183.5 \mathrm{~V} \\
& V_{C}=I X_{C}=371.77 \mathrm{~V}
\end{aligned}
$$

## Power factor of complete circuit:

$$
\begin{gathered}
\cos \emptyset=\frac{R}{Z_{T}}=\frac{30}{34.25}=0.876 \text { lead } . \\
\emptyset=28.85^{\circ}
\end{gathered}
$$

Voltage $V_{1}=V_{R 1}+j V_{L 1}=58.4+j 91.74=108.75 \angle 57.52^{\circ}$ volt
Voltage $V_{2}=V_{R 2}+j\left(V_{L 2}-V_{c}\right)=116.8+j(183.5-371.77)$

$$
=116.8-j 188.27=221.56 \angle-58.19^{\circ} \text { volt }
$$

1 mark for reactances

1 mark for all voltages

Vector diagram :-

## WINTER - 2016 Examinations <br> Model Answer <br> Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS



1 mark for phasor
diagram

5 d ) State relationship between line voltage and phase voltage, line current and phase current in a balanced delta connection. Draw complete phasor diagram of voltages and current.
Ans:
Relationship in 3-phase balanced delta connection:
Line voltage $=$ Phase voltage

$$
V_{L}=V_{p h}
$$

Line current $=\sqrt{3}$ phase current

$$
\mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{I}_{\mathrm{ph}}
$$

## Phasor diagram:-



2 mark

## WINTER - 2016 Examinations <br> Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS
$5 \mathrm{e})$ Calculate current flowing through $2 \Omega$ resistor in fig.(5) by using super position theorem.


Ans:
Circuit is simplified as shown below:

A) Voltage source $\mathbf{V}_{\mathbf{1}}$ acting alone:(Other voltage sources replaced by SC)


Total equivalent resistance across $\mathrm{V}_{1}$ is given by:
$\mathrm{R}_{1}=2+3+(10 \| 15)=11 \Omega$
Current through $2 \Omega$ due to $V_{1}$ alone is:
$\mathrm{I}_{1}=\mathrm{V}_{1} / \mathrm{R}_{1}=5 / 11=\mathbf{0 . 4 5 4 5} \mathbf{~ a m p}($ from $\mathbf{B}$ to $\mathbf{A})=\mathbf{- 0 . 4 5 4 5} \mathbf{~ a m p}($ from $\mathbf{A}$ to $\mathbf{B})$
B) Voltage source $\mathbf{V}_{\mathbf{2}}$ acting alone:(Other voltage sources replaced by SC)


Total equivalent resistance across $\mathrm{V}_{2}$ is given by:
$\mathrm{R}_{1}=10+(10 \| 5)+5=18.33 \Omega$
Current supplied by $\mathrm{V}_{2}$ is: $\mathrm{V}_{2} / \mathrm{R}_{2}=5 / 18.33=0.273 \mathrm{amp}$

## WINTER - 2016 Examinations

Model Answer

## Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

Current through $2 \Omega$ due to $V_{2}$ alone is: (by current division formula) $\mathrm{I}_{2}=0.273(10 / 15)=\mathbf{0 . 1 8 2} \mathbf{~ a m p} \quad($ from $\mathbf{A}$ to B)
C) Voltage source $\mathbf{V}_{\mathbf{3}}$ acting alone:(Other voltage sources replaced by SC)


Since $V_{2}$ and $V_{3}$ are equal and in series, their currents will be same.
Total equivalent resistance across $V_{3}$ is given by:
$\mathrm{R}_{1}=15+(10 \| 5)=18.33 \Omega$
Current supplied by $\mathrm{V}_{3}$ is: $\mathrm{V}_{3} / \mathrm{R}_{3}=5 / 18.33=0.273 \mathrm{amp}$
Current through $2 \Omega$ due to $\mathrm{V}_{3}$ alone is: (by current division formula)
$\mathrm{I}_{3}=0.273(10 / 15)=\mathbf{0 . 1 8 2} \mathbf{~ a m p}($ from $\mathbf{A}$ to $\mathbf{B})$
By Superposition theorem, the current through $2 \Omega$ is given by:
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=-0.4545+0.182+0.182$ (from A to B)

$$
\begin{array}{ll}
=-0.0905 \mathrm{amp}(\text { from A to } B) & 1 \text { mark } \\
=0.0905 \mathrm{amp}(\text { from B to } A) &
\end{array}
$$

Obtain the thevenin equivalent circuits for the circuit shown in fig. (6).


Figure (6)
Ans:

## Calculation of $\mathbf{V}_{\text {th }}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{th}}=30-3 \mathrm{I} \text { or }=15+6 \mathrm{I} \\
& \mathrm{I}=(30-15) /(3+6)=15 / 9=1.66 \mathrm{~A} \\
& \therefore \mathrm{~V}_{\mathrm{th}}=30-3(1.66)=25 \mathrm{~V} \\
& \quad=15+6(1.66)=25 \mathrm{~V}
\end{aligned}
$$



1 mark for diagram

1 mark for calculation of $V_{t h}$

## WINTER - 2016 Examinations <br> Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS Calculation of $\mathbf{R}_{\mathrm{th}}$ :

$$
\begin{aligned}
& \text { Rth }=3+(3 \| 6)=3+2 \\
& \text { Rth }=5 \Omega
\end{aligned}
$$



## Thevenin Equivalent circuit:



6 Attempt any FOUR of the following:
6 a) Draw the phasor diagram and waveform of pure inductance and pure capacitance.
Write voltage and current equation of it.
Ans:
Phasor diagram of pure inductive circuit:-


Waveform of pure inductive circuit:


1 mark
For waveform and equation

Equations:-

$$
v=V_{m} \sin \left(\omega t+90^{\circ}\right) \text { and } i=I_{m} \sin \omega t
$$

## WINTER - 2016 Examinations

Model Answer
Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS
Phasor diagram of pure capacitive circuit:


1 mark
For waveform and equation

## Equations:

$$
v=V_{m} \sin \omega t \text { and } i=I_{m} \sin (\omega t+90)
$$

6b) An ohmic resistance is connected in series with a coil across $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The current is 1.8 A and p.d. across the resistance and coil are 80 V and 170 V respectively. Calculate resistance and inductance of the circuit.

## Ans:-

$$
\begin{gathered}
V_{R}^{2}=80^{2} \\
\therefore \mathrm{~V}_{\mathrm{r}}^{2}+\mathrm{V}_{\mathrm{L}}^{2}=170^{2}-----(1) \\
\left(V_{R}+\mathrm{V}_{r}\right)^{2}+\mathrm{V}_{\mathrm{L}}^{2}=\mathrm{V}^{2} \\
\left(80+V_{r}\right)^{2}+\mathrm{V}_{\mathrm{L}}^{2}=230^{2} \\
80^{2}+160 V_{r}+V_{r}^{2}+\mathrm{V}_{\mathrm{L}}^{2}=230^{2} \\
160 V_{r}=230^{2}-170^{2}-80^{2}
\end{gathered}
$$

$$
\therefore V_{r}=110 \mathrm{~V}
$$

$\therefore \mathrm{r}=\frac{110}{1.8}=61.11 \Omega$
1 mark
1 mark
$\therefore \mathrm{V}_{L}=\sqrt{\left(170^{2}-110^{2}\right)}=129.61 \mathrm{~V}$
1 mark
$\therefore \mathrm{X}_{L}=\frac{129.61}{1.8}=72 \Omega$
$\therefore \mathrm{L}=\frac{X_{L}}{2 \pi f}=0.23 \mathrm{H}$

6c) State the advantages of polyphase circuit over single phase circuit.
Ans:
i) The power generated by 3-phase machine is higher than that of 1-phase machine of the same size.

1 mark each (any four)
ii) The size of 3-phase machine is smaller than that of 1-phase machine of the

## WINTER - 2016 Examinations <br> Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS same power rating.
iii) Three-phase transmission is more economical than single-phase transmission. It requires less copper material.
iv) Three-phase induction motors are self-starting.
v) Polyphase machines have high efficiency, better power factor and uniform torque.
vi) Parallel operation of 3-phase alternators is easier than that of single-phase alternators.
6d) Apply Norton's theorem to calculate current flowing through 5 ohm resistor of fig.(7)


Figure (7)

## Ans:

There are two $5 \Omega$ resistors, students can consider any one and solve. So examiner is requested to consider the solution considering any one of given $5 \Omega$ resistors.
A) Considering $R_{1}=5 \Omega$ resistor:
a) Determination of Norton's Equivalent Current Source ( $\mathbf{I}_{\mathbf{N}}$ ):

Norton's equivalent current source $\mathrm{I}_{\mathrm{N}}$ is the current flowing through a short-circuit across the load terminals due to internal sources, as shown in fig.(a).
Total resistance across 30 V source is,

$$
\begin{aligned}
\mathrm{R} & =\{5| |[10+(12 \| 6)]\} \\
& =3.68 \Omega
\end{aligned}
$$

Therefore, current supplied by source,
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{30}{3.68}=8.14 \mathrm{~A}$
$\therefore \mathrm{I}_{\mathrm{N}}=8.14 \mathrm{~A}$


Figure (a)
b) Determination of Norton's Equivalent Resistance $\left(\mathbf{R}_{\mathbf{N}}\right)$ :

Norton's equivalent resistance is the resistance seen between the load terminals while looking back into the network, with internal independent voltage sources replaced by short-circuit and independent current sources replaced by opencircuit. Referring to fig.(b),

$$
\mathbf{R}_{\mathbf{N}}=5 \|[10+(12 \| 6)]=3.68 \Omega
$$



Figure (b)

Determination of Load Current ( $I_{L}$ ):
Referring to fig.(c), the load current is

$$
\mathbf{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{N}} \frac{\mathrm{R}_{\mathrm{N}}}{\mathrm{R}_{\mathrm{N}}+\mathrm{R}_{\mathrm{L}}}=8.14 \frac{3.68}{3.68+5}=3.45 \mathrm{~A}
$$



Figure (c)

## WINTER - 2016 Examinations

Model Answer

## Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS

## B) Considering $R_{2}=5 \Omega$ resistor:

a) Determination of Norton's Equivalent Current Source $\left(I_{N}\right)$ :

Norton's equivalent current source $\mathrm{I}_{\mathrm{N}}$ is the current flowing through a short-circuit across the load terminals due to internal sources, as shown in fig.(a).
Total resistance across 30 V source is,

$$
\begin{aligned}
\mathrm{R} & =\{5+0 \|[10+(12 \| 6)]\} \\
& =5 \Omega
\end{aligned}
$$

Therefore, current supplied by source,


Figure (a)
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{30}{5}=6 \mathrm{~A}$
$\therefore \mathrm{I}_{\mathrm{N}}=6 \mathrm{~A}$
(b) Determination of Norton's Equivalent Resistance $\left(\mathbf{R}_{\mathrm{N}}\right)$ :

Norton's equivalent resistance is the resistance
seen between the load terminals while looking back into the network, with internal independent voltage sources replaced by short-circuit and independent current sources replaced by opencircuit. Referring to fig.(b),

$$
\mathbf{R}_{\mathbf{N}}=5 \|[10+(12 \| 6)]=3.68 \Omega
$$

## Determination of Load Current ( $\mathbf{I}_{\mathrm{L}}$ ):

Referring to fig.(c), the load current is

$$
\mathbf{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{N}} \frac{\mathrm{R}_{\mathrm{N}}}{\mathrm{R}_{\mathrm{N}}+\mathrm{R}_{\mathrm{L}}}=6 \frac{3.68}{3.68+5}=\mathbf{2 . 5 4 \mathrm { A }}
$$



Figure (b)


Figure (c)

6e) Calculate the value of $R$ which will absorb maximum power from the circuit of fig.(8).


Figure (8)

## Ans:

According to maximum power transfer theorem, the maximum power will be transferred to load R only when $R$ is equal to Thevenin's equivalent resistance ( $\mathrm{R}_{\mathrm{Th}}$ ) of the network, while looking back into the network between the load terminals, when the internal independent voltage sources are replaced by short-circuit and independent current sources are


2 marks for diagram

2 marks for calculations

## WINTER - 2016 Examinations <br> Model Answer

Subject Code: 17323:ELECTRICAL CIRCUITS AND NETWORKS
replaced by open-circuit.

$$
\mathbf{R}_{\mathbf{T h}}=5 \| 10=3.333 \Omega
$$

Therefore, for maximum power transfer, required load resistance will be,

$$
\mathbf{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{Th}}=3.333 \Omega
$$

$6 \mathrm{f}) \quad$ Use super position theorem to find the voltage V in the network shown in fig. (9).


Figure (9)
Ans:
A) Current source $10 \angle 0^{\circ}$ acting alone:
(Voltage source $50 \angle 90^{\circ}$ is replaced by short-circuit)
The current through $(3+\mathrm{j} 4)$ is given by,

$$
\begin{gathered}
I=10 \angle 0^{\circ} \times \frac{-j 4}{3+j 4-j 4}=10 \angle 0^{\circ} \times \frac{4 \angle-90^{\circ}}{3 \angle 0^{\circ}} \\
I=13.33 \angle-90^{\circ}
\end{gathered}
$$

$\therefore$ Voltage due to current source:
$\mathrm{V}_{1}=\mathrm{I}(3+\mathrm{j} 4)=13.33 \angle-90^{\circ} \times 5 \angle 53.13^{\circ}$

$\therefore V_{1}=66.67 \angle-36.87^{\circ}=53.34-\mathrm{j} 40$
B) Voltage source $50 \angle 90^{\circ}$ acting alone:
(Current source $10 \angle 0^{\circ}$ is replaced by open-circuit)
Voltage across ( $3+\mathrm{j} 4$ ) is given by,

$$
\begin{gathered}
V_{2}=50 \angle 90^{\circ} \frac{(3+j 4)}{3+j 4-j 4} \\
=50 \angle 90^{\circ} \frac{5 \angle 53.13^{\circ}}{3} \\
\therefore \boldsymbol{V}_{\mathbf{2}}=\mathbf{8 3 . 3 3} \angle \mathbf{1 4 3 . 1 3}{ }^{\circ}=-\mathbf{6 6 . 6 6}+\mathbf{j 5 0}
\end{gathered}
$$



By Superposition theorem,

$$
\begin{aligned}
V & =V_{1}+V_{2}=53.34-j 40-66.66+j 50 \\
& =-\mathbf{1 3 . 3 3}+\mathbf{j 1 0}=\mathbf{1 6 . 6 6} \angle \mathbf{1 4 3 . 1 2} \mathbf{2}^{\circ}
\end{aligned}
$$

2 marks

