

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Winter 2016

Subject: - Mechanics of Structure

· ------

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelming errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

.....

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	A.	Solve <u>any six</u> of the following:		(12)
	a) Ans. b)	Define moment of inertia. Moment of Inertia: - It is the second moment of area which is equal to product of area which is equal to product of area of figure and square of distance of centroid from particular centroidal axis, is called moment of inertia. OR Moment of inertia of a body about any axis is defined as the second moment of area about that axis. If polar moment of inertia of a circular section is 2000 mm ⁴ then calculate diameter of the section.	02	02
	Ans.	Given: - $I_p = 2000mm^2$ for circular section $I_p = I_{xx} + I_{yy}$ $I_p = \frac{\pi}{64}D^4 + \frac{\pi}{64}D^4$ $2000 = \frac{2\pi}{64}D^4$ $\boxed{D=11.946mm}$	01	02

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	c) Ans.	Define modulus of rigidity. Modulus of Rigidity: - It is defined as the ratio of shear stress to shear strain.	02	02
	d) Ans.	State meaning of punching shear stress. The shear stress produced due to punching in a plate is called punching shear stress.	02	02
	e) Ans.	State four conditions for effective lengths of a column depend on their end fixities. i. When both end of column are hinged, $L_e = L$ ii. When both end of column are fixed, $L_e = \frac{L}{2}$ iii. When one end is fixed and other end is hinged, $L_e = \frac{L}{\sqrt{2}}$ iv. When one end is fixed and other end is free, $L_e = 2.L$	½ Each	02
	f) Ans.	State meaning of effective length of column. Effective length of column: - It is a length between the point of contraflexture of buckled columned it depend on the end conditions of the column.	02	02
	g) Ans.	Define resilience and modulus of resilience. Resilience: -It is energy stored in the body, when it is strained within elastic limit, is called as Resilience or strain energy.	01	02
		Modulus of Resilience: - It is the proof resilience per unit volume of body is called as modulus of resilience.	01	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	h)	Differentiate between gradual load and suddenly applied load with respect to stress developed.		
	Ans.	Gradual load Suddenly applied load		
		i. The stress due to gradual The stress due to suddenly load is, $\sigma = \frac{P}{A}$ applied load is, $\sigma = \frac{2P}{A}$	1	2
		ii. The stress developed is exactly half to that of stress due to sudden load for same loading. The stress developed is almost double to that of stress due to gradual load for same loading.	1	
	(B)	Solve <u>any two</u> of the following:		(08)
	a)	State bending equation with meaning of each term used in it.		
	Ans.	Bending equation or Flexural formula,		
		$\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$	02	
		Where,		04
		$M = Maximum \ bending \ moment(N.mm)$		04
		I = Moment of inertia about N.A. (mm4)		
		$\sigma = Maximum \ bending \ stress \left(N / mm^2 \right)$ $y = Distance \ of \ extreme \ fiber \ from \ N.A.(mm)$	02	
		E = Modulus of elasticity (N/mm2)		
		$R = Radius \ of \ curvature \ (mm)$		
	b)	A beam of rectangular cross – section is subjected to shear force 'S'. Show that q maximum = 1.5 q avg.		
	Ans.	$q_{ ext{max}} = rac{S.A.ar{Y}}{b.I}$	01	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.		$q_{\text{max}} = \frac{S \times b \times \frac{d}{2} \times \frac{d}{4}}{b \times \frac{bd^{3}}{12}}$	01	04
		$q_{\text{max}} = \frac{3.S}{2.bd}$	01	
		$q_{\text{max}} = 1.5 \frac{S}{b.d}$ $q_{\text{max}} = 1.5 \times q_{avg}$	01	
	c)	A column having diameter 200 mm is of length 3m, both ends of column are hinged. Find Euler's crippling load. Take $E=2 \times 10^5$ MPa.		
	Ans.	Given: - D = 200mm, L = 3m = 3000mm (both ends hinged), $E = 2 \times 10^{5} MPa = 2 \times 10^{5} \text{ N/mm}^{2}$ $I_{min} = I_{XX} = I_{YY} = \frac{\pi}{64} (200)^{4}$ $I_{min} = I_{XX} = I_{YY} = 78.539 \times 10^{6} mm^{4}$ By Euler's formula,	01	
		$ ext{P}_{ ext{e}} = rac{\pi^2 E I_{ ext{min}}}{L_{ ext{e}}^2}$	01	04
		$P_{e} = \frac{\pi^{2} \times 2 \times 10^{5} \times 78.539 \times 10^{6}}{3000^{2}}$ $P_{e} = 17225530.22N$	01	
		$P_{\rm e} = 17225.536.221$ $P_{\rm e} = 17225.53 \ kN$	01	
2.		Solve <u>any two</u> of the following:		(16)
	a)	Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm x 75 mm x 10 mm as shown in figure no. 1.		
	Ans.	i) Calculation centroid: - $A_{1} = 75 \times 10 = 750mm^{2}, A_{2} = 115 \times 10 = 1150mm^{2}$ $X_{1} = \frac{75}{2} = 37.5m, \qquad X_{2} = \frac{10}{2} = 5mm$		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	Que	$Y_{1} = \frac{10}{2} = 5mm, Y_{2} = 10 + \frac{115}{2} = 67.5mm$ $\bar{X} = \frac{A_{1}X_{1} + A_{2}X_{2}}{A_{1} + A_{2}} = 17.83mm, \bar{Y} = \frac{A_{1}Y_{1} + A_{2}Y_{2}}{A_{1} + A_{2}} = 42.83mm$	02	TVIAL KS
		Y = 42.83 75		
		ii) Calculation of I_{xx} : — $I_{xx} = I_{xx1} + I_{xx2}$ $I_{xx} = (I_{G1} + A_1 h_1^2) + (I_{G2} + A_2 h_2^2)$ $I_{xx} = (I_{G1} + A_1 h_1^2) + (I_{G2} + A_2 h_2^2)$ $Here, h_1 = \bar{Y} - Y = 42.83 - 5 = 37.83mm$ $h_2 = Y_2 - \bar{Y} = 67.5 - 42.83 = 24.67mm$		
		$I_{xx} = \left(\frac{75 \times 10^{3}}{12} + 750 \times 37.83^{2}\right) + \left(\frac{10 \times 115^{3}}{12} + 1150 \times 24.67^{2}\right)$ $I_{xx} = 3.046 \times 10^{6} mm^{4}$	03	08

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.		iii) Calculation of I _{yy} :-		
		$ \begin{vmatrix} I_{YY} = I_{YY1} + I_{YY2} \\ I_{YY} = (I_{G1} + A_1 h_3^2) + (I_{G2} + A_2 h_4^2) \end{vmatrix} $		
		-		
		Here, $h_3 = X - X = 37.5 - 17.83 = 19.67 mm$		
		$h_4 = X - X_2 = 17.83 - 5 = 12.83mm$ $(10 \times 75^3) \qquad (115 \times 10^3)$		
		$I_{YY} = \left(\frac{10 \times 75^3}{12} + 750 \times 19.67^2\right) + \left(\frac{115 \times 10^3}{12} + 1150 \times 12.83^2\right)$	03	
		$I_{yy} = 840.627 \times 10^3 mm^4$		
	b)	Determine moment of Inertia about the centroidal axes X-X and Y-Y of an unsymmetrical I section with the following details.		
		Top flange - 100×20 mm		
		Bottom flange - 160×20 mm		
		Web - 80×20 mm		
	Ans.	i) Calculation of centroid: -		
		As given section is unsymmetrical about y-y axis,		
		100		
		20		
		68.824		
		80		
		201		
		Y = 51.176		
		20		
		A Landing of the land of the l		
		160		
		,		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.		$\begin{split} \ddot{X} &= \frac{L \arg e \text{ flange width}}{2} = \frac{160}{2} = 80mm \\ A_1 &= 160 \times 20 = 3200mm^2, A_1 = 80 \times 20 = 1600mm^2, \\ A_3 &= 100 \times 20 = 2000mm^2 \\ Y_1 &= \frac{20}{2} = 10mm, \qquad Y_2 = 20 + \frac{80}{2} = 60mm, \\ Y_3 &= 20 + 80 + \frac{20}{2} = 110mm, \\ \ddot{Y} &= \frac{(3200 \times 10) + (1600 \times 60) + (2000 \times 110)}{6800} = 51.17mm, \\ \ddot{ii}) \ Calculation \ \text{of} \ I_{xx} : -I_{xx1} + I_{xx2} + I_{xx3} \\ I_{xx} &= (I_{G1} + A_1 h_1^2) + (I_{G2} + A_2 h_2^2) + (I_{G3} + A_3 h_3^2) \\ I_{xx} &= (\frac{bd^3}{12} + A_1 h_1^2) + (\frac{bd^3}{12} + A_2 h_2^2) + (\frac{bd^3}{12} + A_3 h_3^2) \end{split}$	01	OΩ
		Here, $h_1 = \bar{Y} - Y_1 = 1.17 - 10 = 41.17mm$ $h_2 = Y_2 - \bar{Y} = 60 - 51.17 = 8.83mm$ $h_3 = Y_3 - \bar{Y} = 110 - 51.17 = 58.83mm$ $I_{xx} = \left(\frac{160 \times 20^3}{12} + 3200 \times 41.17^2\right) + \left(\frac{20 \times 80^3}{12} + 1600 \times 8.83^2\right) + \left(\frac{100 \times 20^3}{12} + 2000 \times 58.83^2\right)$ $I_{xx} = 13.496 \times 10^6 mm^4$ $iii) Calculation of I_{yy} : -I_{yy} = I_{yy1} + I_{yy2} + I_{yy3} I_{yy} = (I_{G1} + A_1 h_1^2) + (I_{G2} + A_2 h_2^2) + (I_{G3} + A_3 h_3^2) I_{yy} = (I_{G1} + A_1 h_1^2) + (I_{G2} + A_2 h_2^2) + (I_{G3} + A_3 h_3^2)$	04	08
		$I_{YY} = \left(\frac{db^{3}}{12}\right) + \left(\frac{db^{3}}{12}\right) + \left(\frac{db^{3}}{12}\right)$ $I_{YY} = \left(\frac{20 \times 160^{3}}{12}\right) + \left(\frac{80 \times 20^{3}}{12}\right) + \left(\frac{20 \times 100^{3}}{12}\right)$ $I_{YY} = 8.546 \times 10^{6} mm^{4}$	03	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	c)	i) Find moment of Inertia about the diagonal of a square section having diagonal 400 mm.		
		ii) Draw stress – strain curve for mild steel under tensile loading showing important points on it.		
	Ans.	i)		
		To find MI at diagonal AB, $I_{AB} = 2\left(\frac{bh^3}{12}\right) (MI \text{ at base of triangle})$	02	
		$I_{AB} = 2\left(\frac{400 \times 200^{3}}{12}\right)$ $I_{AB} = 5.33 \times 10^{8} mm^{4}$	02	
		ii) Stress (N/mm²) A B C D	02	08
		A = Proportional limit point B = Elastic limit point C = Upper yield point p = Lower yield point E = Ultimate load point F = Breaking load point	02	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	a)	Solve <u>any two</u> of the following : Determine the total elongation of the bar shown in figure No. 2 Take $E=2 \times 10^5 \ N/mm^2$		(16)
	Ans.	20 \$\phi \qu	01	08
		$\delta_{L} = \delta_{L1} + \delta_{L2} + \delta_{L3}$ $\delta_{L} = \left(\frac{PL}{AE}\right)_{1} + \left(\frac{PL}{AE}\right)_{2} + \left(\frac{PL}{AE}\right)_{3}$ $\delta_{L} = \frac{L}{E} \times \left(\frac{P_{1}}{A} + \frac{P_{1}}{A} + \frac{P_{1}}{A}\right)$ $\delta_{L} = \frac{1000 \times 10^{3}}{\frac{\pi}{A} \times (2 \times 10^{5})} \left[\frac{50}{20^{2}} + \frac{60}{10^{2}} + \frac{20}{20^{2}}\right]$	06	US
	b)		01	
		4 NOS, 20 \$\frac{1}{4}		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	Ans.	Given: $-P = 500kN$ $A_s = 4 \times \frac{\pi}{4} (20)^2 = 1256.637mm^2$ $A_c = (400 \times 400) - 1256.637 = 158743.36mm^2$	02	
		$P = P_s + P_c$ $P = \sigma_s A_s + \sigma_c A_c$ (1) $But,$	01	
		$M = \frac{E_s}{E_c} = \frac{\sigma_s}{\sigma_c} = 13$ $\sigma_s = 13 \times \sigma_c$	01	08
		From equation (1), $500 \times 10^3 = (13 \times \sigma_c \times 1256.637) + (\sigma_c \times 158743.36)$ $\boxed{\sigma_c = 2.855 \text{ N/mm}^2}$	02	
	c)	$\sigma_s = 37.125 \text{ N/mm}^2$ A bar of cross section 20 mm x 40 mm and length 500 mm is subjected to axial tensile force of 50kN. The change in lengths is		
	Ans.	0.20mm. Determine change in depth and change in width and change in volume of bar. Take $\mu=0.30$ and $E=2$ x 10^5 N/mm ² .		
		$\mu = \frac{Lateral\ strain}{Linear\ strain} = \frac{\left(\frac{\delta_t}{t}\right)}{\left(\frac{\delta_L}{L}\right)}$ $\mu = \frac{Lateral\ strain}{Linear\ strain} = \frac{\left(\frac{\delta_t}{t}\right)}{\left(\frac{\delta_L}{L}\right)}$	01	
		$\therefore \ \delta_{t} = \frac{\mu \times \left(\frac{\delta_{L}}{L}\right)}{t} = \frac{0.30 \times \left(\frac{0.20}{500}\right)}{40} = \boxed{4.8 \times 10^{-3} mm}$ $\mu = \frac{lateral \ strain}{Linear \ strain} = \frac{\left(\frac{\delta_{b}}{b}\right)}{\left(\frac{\delta_{L}}{L}\right)}$	02	
		$\therefore \delta_b = \frac{\mu \times \left(\frac{\delta_L}{L}\right)}{b} = \frac{0.30 \times \left(\frac{0.20}{500}\right)}{20} = \boxed{2.4 \times 10^{-3} mm}$	02	08

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.		$\delta_V = e(1-2\mu)V$ $\delta_V = \frac{\delta_L}{L}(1-2\mu)V$ $\delta_V = \frac{0.2}{500}(1-2\times0.3)\times20\times10\times500$ $\delta_V = 64 \text{ mm}^3$	01 01 01	
4.	a)	Solve <u>any two</u> of the following: In a biaxial stress systems shown in figure No. 3, the stresses along the two perpendicular directions. Calculate the strains along these two directions. Take $E=2.1 \times 10^5 N/mm^2$ and $\mu=0.28$. Also find change in length in both directions if section is square of 4m.		(16)
		40 N/mm ² 4m 4m 4m 4m 40 N/mrn ²		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
_		$Given: - \sigma_x = +70, \ \sigma_y = -40, \\ \mu = 0.28, \ E = 2 \times 10^5 \ \text{N/mm}^2$ $e_x = \frac{\sigma_x}{E} - \mu \frac{\sigma_y}{E} = \frac{1}{E} (\sigma_x - \mu \sigma_y)$ $= \frac{1}{2 \times 10^5} (70 - (0.28 \times (-40)))$ $= 3.687 \times 10^4 (T)$ $e_y = \frac{\sigma_y}{E} - \mu \frac{\sigma_x}{E} = \frac{1}{E} (\sigma_y - \mu \sigma_x)$ $= \frac{1}{2 \times 10^5} ((-40) - (0.28 \times 70))$ $= -2.838 \times 10^4 (C)$ $e_x = \frac{\delta L_{PQ}}{PQ}$ $\delta L_{PQ} = (e_x) \times PQ = (3.867 \times 10^4) \times 4000 = 1.5467 mm (Increase)$ $e_y = \frac{\delta L_{QR}}{QR}$ $\delta L_{QR} = (e_y) \times QR = (2.838 \times 10^4) \times 4000 = 1.135 mm (Decrease)$ A rod is subjected to an initial compressive stress 50 N/mm2 and held in rigid supports at temperature of 50 °C. Find i) The temperature at which rod will become stress free. ii) What tensile stress will be developed at temperature 30 °C?	01 02 01 01 01	
		iii) What will be compressive stress at temperature 30 °C?		
		iv) What will be elongation of rod at temperature 30 $^{\circ}$ C? Take $\alpha = 12 \times 10^{-6} / ^{\circ}$ C		
		$E = 200 \text{ kN/mm}^2$		
		$c/s Area = 400 mm^2$		
		length = 4 m		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	Ans.	The temperature at which rod will become stress free.		
		$\sigma = E\alpha T$		
		$\therefore T = \frac{\sigma}{E\alpha}$		
		$T = \frac{50}{2 \times 10^5 \times 12 \times 10^{-6}}$		
		$T = 20.833^{\circ}C$		
		<i>i.e.</i> The temperature is reduced by $20.833^{\circ}C$		
		The rod will become Stress free at $50^{\circ}C - 20.833^{\circ}C = 29.1667^{\circ}C$	02	
		Case ii)		
		What tensile stress will be developed at temperature $30^{\circ}C$?		
		At temp. $30^{\circ} C$ the stress will be		
		$\sigma = E \alpha \Box t$		
		$=2\times10^{5}\times12\times10^{-6}\times(30)$		
		$\sigma = 72 \text{ N/mm}^2$ (T)		
		∴ Net stress in the rod at $30^{\circ}C$ will be $-50 + 72 = 22\text{N/mm}^{2}(\text{T})$	02	
		Case iii)		
		What will be compressive stress at temperature $30^{\circ}C$?		
		At temperature 30°C compressive stress is,		
		$\sigma = E\alpha T$		
		$= 2 \times 10^5 \times 12 \times 10^{-6} \times (30-29.1667)$	02	08
		$\sigma = 1.99992 \text{ N/mm}^2 \text{ (C)}$	02	
		Case iv)		
		What will be elongation of rod at temperature $30^{\circ}C$?		
		A elongation of rod at temperature $30^{\circ}C$ is		
		Net stress T $30^{\circ}C$ is $(+22 - 2) = 20 \text{ N/mm}^2$		
		and \Box T is $(50^{\circ}\text{C} - 30^{\circ}C) = 20^{\circ}C$		
		$\delta L = \delta L_1 + \delta L_2$		
		$= \frac{\sigma L}{E} + L\alpha T = \frac{20 \times 4000}{2 \times 10^5} + 4000 \times 12 \times 10^{-6} \times (20)$		
		= 0.4+0.96 = 1.36 mm	02	
		$\delta L = 1.36 \text{ mm}$ (increase)		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	c)	An overhanging beam ABC is such that AB = 4m, BC = 1m, is supported at A and B. The beam ABC is subjected to VDL of 30 kN/m over the entire length ABC. It is subjected to point load 50 kN at the free end C. Draw SFD and BMD with calculations and locate the point of contra flexure.		
	Ans.	i) To calculte the reactions at supports:- $R_{B} \times 4 = (30 \times 5 \times 2.5) + 50 \times 5$ $\boxed{R_{B} = 156.25kN}$ $R_{A} = (30 \times 5 \times 50) - 156.25$ $\boxed{R_{A} = 43.75kN}$ ii) Shear force calculations $SF \text{ at } A = 43.75 \text{ kN}$	01	
		SF at B _L = $43.75 - 30 \times 40 = -76.25 \text{ kN}$ SF at B _R = $-76.25 + 156.25 = 80 \text{ kN}$ SF at C _L = $80 - 30 \times 1 = 50 \text{ kN}$ SF at C = $50 - 50 = 0$ (:. Ok)	01	
		BM at A and C =0. BM at B = $-50 \times 1 - 30 \times 1 \times \frac{1}{2}$ = -65 kN-m iv) To calcuate Maximum Bending Moment SF at x = 0,	01	
		$\therefore 43.75 - 30 \times x = 0$ $\therefore x = 1.458 \text{m from A}$	01	
		$BM_{\text{max}} = 43.75 \times 1.458 - 30 \times \frac{1.458^{2}}{2}$ $BM_{\text{max}} = 31.90kN - m$ $v)To \text{ locate point of contraflexure}$ $BM \text{ at } x' = 0$	01	
		$43.75 \times -30 \times \frac{x}{2} = 0$ $\boxed{x = 2.916 \ m \text{ from A}}$	01	08

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Que. No. 4.		Model Answers 50 kN 43.75 43.75 50 43.75 50 43.75 80 76.25 8MD (KN-1)	01	Total
		65		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.		Solve any two of the following:		(16)
	a)	Draw SFD and BMD with calculations for the beam shown in figure No. 4		
		i) Shear force calculations		
		SF at A = $40 \times 2 = 80 \text{ kN}$		
		SF at B = 80 kN	02	
		SF at B = $80 - 40 \times 2 = 0$		
		SF at $D = 0$		
		ii)Bending moment calculations		
		BM at D = $+80 \text{ kN-m}$	02	
		BM at $C = +80 \text{ kN-m}$	02	
		BM at B = $80 - 40 \times 2 \times 1 = 0$		
		BM at A = $80 - 40 \times 2 \times 3 = -160 \text{ kN-m}$		
		40 KN/m		08
		2m 2m 2m 0 80 KH-m		
		80 80	02	
		A B C D SFD (KN)		
		Curve BMD (KN-m)		
		B C D	02	
		160		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	b)	i) State relation between shear force and rate of loading and also		
		relation between shear force and bending moment.		
		ii) Draw SFD and BMD with calculations for the beam shown in figure No. 5.		
	Ans.			
		i)		
		1) The relation between shear force and rate of loading: -		
		The rate of shear force w.r.t. distance is equal to the intensity		
		of loading, i.e. $\frac{dF}{dx} = W$	02	
		2) The relation between shear force and bending moment: -		
		The rate of change of bending moment at any section is equal to		
		shear force at that section i.e. $\frac{dM}{dx} = F$	02	
		Where,		
		W – Intensity if loading		
		F - Shear force		
		M - bending moment		
		x – distance		
		ii)		
		i) To calculte the reactions at supports:-		
		$R_C \times 8 = (10 \times 4 \times 2) + 80 \times 4 + 20 \times 4 \times 6$		
		$R_C = 110kN$		
		$R_A = (10 \times 4) + (20 \times 4) + 80 - 110$		
		$R_A = 90 \ kN$		08
		ii) Shear Force calculations SF at A = 90 kN		
		SF at $A = 90 \text{ kN}$ SF at $B_L = 90 - 10 \times 4 = 50 \text{ kN}$		
		SF at $B_R = 50 - 80 = -30 \text{ kN}$		
		SF at $C_L = -30 - 20 \times 4 = -110 \text{ kN}$	0.4	
		SF at C = $-110+110 = 0$ (: Ok)	01	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.		10 kN/m 80 kN 20 kN/m Am 4m 4m		
		50 + B SFD (KN)	01	
		280 + BMD (KN-m)	01	
		iii)Bending moment calculations BM at A and C =0. BM at B = $110\times4 - 20\times4\times2$ = 280 kN-m	01	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	c)	A T section of flange 160 mm x 20 mm and web 180 x 20 mm is simply supported at the both ends. It carries two concentrated loads of 100 kN each acting 2m distance from each support. Span of the beam is 8m. Determine the maximum bending stress induced in the beam and draw bending stress distribution diagram and also find bending stress at the layer 100 mm from the bottom.		
	Ans.	$ \bar{Y} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2} = \frac{(160 \times 20) \times 190 + (180 \times 20) \times 90}{3200 + 3600} $ $ \bar{Y} = 137.05 \ mm \ from \ base $ $ I_{NA} = I_{xx} = I_{xx1} + I_{xx2} $	01	
		$I_{NA} = I_{xx} = I_{xx1} + I_{xx2}$ $I_{NA} = I_{xx} = (I_{G1} + A_1 h_1^2) + (I_{G2} + A_2 h_2^2)$ $I_{NA} = I_{xx} = (\frac{bd^3}{12} + A_1 h_1^2) + (\frac{bd^3}{12} + A_2 h_2^2)$ $I_{NA} = I_{xx} = \left(\frac{160 \times 20^3}{12} + 3200 \times 52.94^2\right) + \left(\frac{20 \times 180^3}{12} + 3600 \times 47.06^2\right)$		
		$I_{NA} = I_{xx} = 26767843.15 \text{ mm}^4$	02	
		Maximum bending moment		
		$M = 100 \times 2 = 200 \text{ kN-m} = 200 \times 10^6 N - mm$	01	
		$\sigma_c = \frac{M}{I} y_c = \left[\frac{200 \times 10^6}{26767843.15} \right] \times 62.94 = 470.265 N / mm^2(C)$	01	
		$\sigma_{t} = \frac{M}{I} y_{t} = \left[\frac{200 \times 10^{6}}{26767843.15} \right] \times 137.06 = 1024.06 N / mm^{2}(T)$	01	08
		$\sigma_{t} = \frac{M}{I} y_{t(100)} = \left[\frac{200 \times 10^{6}}{26767843.15} \right] \times 37.06 = 276.899 N / mm^{2} (T)$	01	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.		180 137.06 137.06 1024.06 N/mm ² (T)	01	
6.		Solve <u>any two</u> of the following:		(16)
	a)	A beam has hollow rectangular section with external dimensions 80 mm x 160 mm and uniform thickness of section is 10 mm. Draw shear stress variation diagram. It section is subjected to the shear force 70kN. Also determine ratio of maximum shear stress and average shear stress.		
	Ans.	$N = 160$ $Q_1 = 3.86$ $Q_2 = 15.46$	01	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.		$A = (BD - bd) = (80 \times 160 - 60 \times 140)$ $A = 4400 \text{ mm}^{2}$ $A = (BD - bd) = (80 \times 160 - 60 \times 140)$ $A = 4400 \text{ mm}^{2}$ $A = (BD - bd) = (80 \times 160 - 60 \times 140)$	1/2	
		$I_{NA} = \frac{1}{12}(BD^3 - bd^3) = \frac{1}{12}(80 \times 160^3 - 60 \times 140^3)$ $I_{NA} = 13586666.67 \text{ mm}^4$	01	
		$q_{avg} = \frac{S}{A} = \frac{70 \times 10^{3}}{4400}$ $q_{avg} = 15.91 N / mm^{2}$	01	
		$q_{1} = \frac{SAY}{bI} = \frac{70 \times 10^{3} \times (80 \times 10) \times 75}{80 \times 13586666.67}$ $\boxed{q_{1} = 3.864N / mm^{2}}$	01	
		$q_2 = q_1 \times \frac{80}{20} = 3.864 \times 40$ $q_2 = 15.456 N / mm^2$	01	08
		$q_{add} = \frac{SAY}{bI} = \frac{70 \times 10^{3} \times 2(70 \times 10) \times 35}{20 \times 13586666.67}$ $q_{add} = 12.622N / mm^{2}$	01	
		$q_{NA} = q_{\text{max}} = q_2 + q_{add}$ =15.456+12.622 $q_{NA} = 28.078 \text{N/mm}^2$ Ratio,	01	
		$\frac{q_{\text{max}}}{q_{avg}} = \frac{28.078}{15.91}$ $\frac{q_{\text{max}}}{q_{avg}} = 1.765$	1/2	
	b)	A hollow circular column 6m long has to transit a load of 800 kN, using Rankine's formula and factor of safety 4. Design a suitable section if both ends of columns are fixed. Take internal diameter = 0.8 x external dia. Fc = 550 Mpa , $\alpha = 1/1600$		
		$A = \frac{\pi}{4}(D^2 - d^2) = \frac{\pi}{4}(D^2 - (0.8D)^2) = 0.28D^2$	1/2	

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	Ans.	$I = \frac{\pi}{64}(D^4 - d^4) = \frac{\pi}{64}(D^4 - (0.8D)^4) = 0.02898D^4$	01	
		$K^2 = \frac{I}{A} = \frac{0.02898D^4}{0.28D^2} = 0.1025D^2$		
		$\boxed{K^2 = 0.1025D^2}$	01	
		Crippling load = Safe load \times FOS = 800×4		
		Crippling load = $3200 \times 10^3 N$	01	
		$L_e = \frac{L}{2} = \frac{6000}{2} = 3000 \ mm$	1/2	
		$P = \frac{\sigma_c.A}{1 + \alpha \left(\frac{L_e}{K}\right)^2}$	01	
		$3200 \times 10^{3} = \frac{550 \times 0.28D^{2}}{1 + \frac{1}{1600} \times \left(\frac{(3000)^{2}}{0.1025D^{2}}\right)}$		
		$3200 \times 10^3 = \frac{154D^2}{1 + \frac{54878.048}{D^2}}$		
		$3200 \times 10^3 = \frac{154D^4}{D^2 + 54878.048}$		
		$154D^4 = (3200 \times 10^3) \times D^2 + 1.756 \times 10^{11}$		
		$let, D^2 = x$		
		$154x^4 = (3200 \times 10^3) \times x + 1.756 \times 10^{11}$		08
		$x^2 - 20779.221x - 1140323092 = 0$		
		$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
		$x = \frac{20779.221 \pm \sqrt{(20779.221)^2 - 4 \times 1 \times 1140323092}}{2 \times 1}$		
		$x = \frac{20779.221 \pm 70661.647}{2}$		
		x = 45720.4341	02	
		$D^2 = 45720.4341$		
		D = 213.82 mm		

Model Answer: Winter 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	_			
		$d = 0.8 \times D = 0.8 \times 213.82$	01	
		d = 171.056mm		
	c)	A bar 10 mm diameter is subjected to following cases. Determine strain energy stored and modulus of resilience in following cases.		
		i) A gradually applied load of 800N stretches bar by 0.3mm		
		ii) An impact load of 800 N is dropped by 80 mm on the collar attached at the lower end of the bare. Take $e=200\ GPa$.		
	Ans.	$\delta L = \frac{PL}{AE}$		
		$L = \frac{\delta L(AE)}{P} = \frac{0.3 \times \frac{\pi}{4} \times (10)^{2} \times 2 \times 10^{5}}{800}$		
		l	01	
		L = 5890.486mm		
		Case i)		
		$\sigma = \frac{P}{A} = \frac{800}{\frac{\pi}{4} \times (10)^2}$		
			01	
		$\sigma = \frac{10.1859 N / mm^2}{\sigma^2 \qquad 10.1859^2 \qquad \pi \qquad 2}$		
		$U = \frac{\sigma^2}{2E}V = \frac{10.1859^2}{2 \times 2 \times 10^5} \times \frac{\pi}{4} (10)^2 \times 5890.486$	01	
		U = 120.096N - mm		
		Modulus of Resiliance = $\frac{\sigma^2}{2E} = \frac{10.1859^2}{2 \times 2 \times 10^5}$		
		Modulus of Resiliance = $2.5938 \times 10^{-4} N - mm / mm^3$	01	
		Case (ii)		
		$\sigma = \frac{P}{A} + \sqrt{\left(\frac{P}{A}\right)^2 + \frac{2PhE}{AL}}$	01	
		$\sigma = \frac{800}{\frac{\pi}{4}(10)^2} + \sqrt{\left(\frac{800}{\frac{\pi}{4}(10)^2}\right)^2 + \frac{2 \times 800 \times 80 \times 2 \times 10^5}{\frac{\pi}{4} \times (10)^2 \times 5890.486}}$		

Model Answer: Winter 2016

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.		$\boxed{\sigma = 245.64 N / mm^2}$ $U = \frac{\sigma^2}{2E} V = \frac{245.64^2}{2 \times 2 \times 10^5} \times \frac{\pi}{4} (10)^2 \times 5890.486$	01	
		$U = \frac{100}{2E} = \frac{100}{2 \times 2 \times 10^5} \times \frac{100}{4} = \frac{100}{4} = \frac{100}{4} = \frac{100}{4} \times \frac{100}{4} = $	01	
		Modulus of Resiliance = $\frac{\sigma^2}{2E} = \frac{245.64^2}{2 \times 2 \times 10^5}$		
		Modulus of Resiliance = $0.15084 N - mm / mm^3$	01	

17311