Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	$\begin{gathered} \text { Sub } \\ \text { Q. N. } \end{gathered}$	Answer	Marking Scheme
1	(A)	Attempt any three:	12
	a)	Explain design considerations in automobile design.	04
		Answer: Design considerations in automobile design: (Any eight) 1. Types of loads and stresses caused by the load. 2. Motion of parts and kinetics of machine. 3. Material selection criteria based on cost, properties etc. 4. Shape and size of parts. 5. Frictional resistance and lubrication. 6. Use of standard parts. 7. Safety operations. 8. Work shop facilities available. 9. Manufacturing cost. 10. Convenient of assembly and transportation.	04
	b)	Explain Ergonomic aspects of machine design.	04
		Answer: Ergonomic aspects of machine design: The word 'ergonomics' is coined from two Greek words ergon = work and nomos $=$ natural laws. Ergonomics means the natural laws of work. Anthropometry, Physiology and psychology are the components of ergonomics. Anthropometry: With the help of anthropometry dimensions of the components are finalized so that they can be easily handled by operator without fatigue and with	01 01

	consistence efficiency for e.g. diameter of steering wheel, distance from chair to pedals. Physiology: With the help of physiology components are designed to be operated by hand or foot force. For e.g. Gear shifting, Steering wheel are designed to be operated by hand because they require speed and accuracy which is imparted by hand and brake pedal clutch pedal etc. are designed to be operated by foot force because they require great amount of force is require than accuracy. Psychology: Psychology affects mode of operation for e.g. size, colour and push operation of emergency stops button of any machine. The size of emergency control is made large and painted in red so that they can be easily identified and always they are push operated. All these components make design of automobile components user friendly.	01
c)	Write two application of each of the following: i) Turn buckle ii) Knuckle joint	04
	Answer: i) Turn Buckle: (Any two applications - 1 mark each) 1. Tie rod of steering system 2. To connect compartments of locomotives 3. Tie strings of electric poles 4. link rod of leaf springs in multi axle vehicles 5. linkages of gear shifter 6. Connection between brake pedal and master cylinder ii) Knuckle joint: (Any two applications - 1 mark each) 1. It is used in link of cycle chain 2. It is used in tie rod joints for roof truss 3. It is used in valve rod joint for electric rod 4. It is used in pump rod joint 5. It is used in tension link in bridge structure 6. It is used in lever and rod connection of various types	02
d)	State and explain the effect of keyways on shaft.	04
	Answer: Effect of key way cut into the shaft: The keyway cut into the shaft reduces the load carrying capacity of the shaft. This is due to the stress concentration near the corners of the keyway and reduction in the cross-sectional area of the shaft. It other words, the torsional strength of the shaft is reduced. The following relation for the weakening effect of the keyway is based on the experimental results by H.F. Moore. $\mathrm{e}=1-0.2(\mathrm{w} / \mathrm{d})-1.1(\mathrm{~h} / \mathrm{d})$ where, $\mathrm{e}=$ Shaft strength factor, $\mathrm{w}=$ width of key way, $\mathrm{d}=$ diameter of shaft, and $\mathrm{h}=$ depth of keyway It is usually assumed that the strength of the keyed shaft is 75% of the solid shaft.	02

	In case the keyway is too long and the key is of sliding type, then the angle of twist is increased in the ratio K_{θ} as given by the following relation: $\begin{aligned} & k_{\theta}=1+0.4\left(\frac{w}{d}\right)+0.7\left(\frac{h}{d}\right) \\ & k_{\theta}=\text { Reduction factor for angular twist. } \end{aligned}$	02
(B)	Attempt any one:	06
a)	Write stepwise design procedure for a bushed pin flexible coupling.	06
	Answer: (Neat fig. - 2 Marks, Any four steps - 1 Mark each) Figure. Bushed Pin Flexible Coupling Design Procedure: Design of Shaft: $\begin{array}{r} \mathrm{P}=2 \Pi \mathrm{NT} / 60 \\ \mathrm{~T}=\Pi / 16 \tau \mathrm{~d}^{3} \end{array}$ Design of Pin: Let $1=$ Length of bush in the flange, $d_{2}=$ Diameter of bush, $p_{b}=$ Bearing pressure on the bush or pin, $n=$ Number of pins, and $\mathrm{n}=\mathrm{d} / 25+3$ Diameter of pin $\mathrm{d}_{1}=0.5 \mathrm{~d} / \sqrt{n}$ Dia. of pin in rubber bush $d_{3}=1.5 d_{1}$ $\begin{aligned} \mathrm{d}_{2} & =\mathrm{d}_{1}+6 \mathrm{~mm} \\ D_{1} & =\text { Diameter of pitch circle of the pins. } \\ & =3 \mathrm{~d} \end{aligned}$	02
		04

We know that bearing load acting on each pin,

$$
W=p_{b} \times d_{2} \times 1
$$

\therefore Total bearing load on the bush or pins

$$
=W \times n=p_{b} \times d_{2} \times l \times n
$$

and the torque transmitted by the coupling,

$$
T=W \times n\left(\frac{D_{1}}{2}\right)=p_{b} \times d_{2} \times I \times n\left(\frac{D_{1}}{2}\right)
$$

Direct shear stress due to pure torsion in the coupling halves,

$$
\tau=\frac{W}{\frac{\pi}{4}\left(d_{1}\right)^{2}}
$$

maximum bending moment on the pin,

$$
M=W\left(\frac{1}{2}+5 \mathrm{~mm}\right)
$$

We know that bending stress,

$$
\sigma=\frac{M}{Z}=\frac{W\left(\frac{1}{2}+5 \mathrm{~mm}\right)}{\frac{\pi}{32}\left(d_{1}\right)^{3}}
$$

Since the pin is subjected to bending and shear stresses, therefore the design must be checked either for the maximum principal stress or maximum shear stress by the following relations :

Maximum principal stress

$$
=\frac{1}{2}\left[\sigma+\sqrt{\sigma^{2}+4 \tau^{2}}\right]
$$

and the maximum shear stress on the pin

$$
=\frac{1}{2} \sqrt{\sigma^{2}+4 \tau^{2}}
$$

Design of Hub:

The hub is designed by considering it as a hollow shaft, transmitting the same torque (T) as that of a solid shaft.

$$
\therefore \quad T=\frac{\pi}{16} \times \tau_{c}\left(\frac{D^{4}-d^{4}}{D}\right)
$$

The outer diameter of hub is usually taken as twice the diameter of shaft. Therefore from the above relation, the induced shearing stress in the hub may be checked.

The length of hub (L) is taken as 1.5 d .

Design of Key:

For rectangular Key, $w=d / 4, t=d / 6$
For square key, $\mathrm{w}=\mathrm{d} / 4, \mathrm{t}=\mathrm{d} / 4$

$$
\begin{array}{rlr}
T & =1 \times w \times \tau \times \frac{d}{2} & \ldots . \text { (Considering shearing of the key) } \\
& =1 \times \frac{t}{2} \times \sigma_{c} \times \frac{d}{2} & \ldots \text { (Considering crushing of the key) }
\end{array}
$$

	Design of flange: The flange at the junction of the hub is under shear while transmitting the torque. Therefore, the troque transmitted, $\begin{aligned} T & =\text { Circumference of hub } \times \text { Thickness of flange } \times \text { Shear stress of flange } \times \text { Radius of hub } \\ & =\pi D \times t_{f} \times \tau_{c} \times \frac{D}{2}=\frac{\pi D^{2}}{2} \times \tau_{c} \times t_{f} \end{aligned}$ The thickness of flange is usually taken as half the diameter of shaft. Therefore from the above relation, the induced shearing stress in the flange may be checked.	
b)	Design a knuckle joint (i) fork end (ii) Eye end (iii) Knuckle pin where the tensile force $40 \times 10^{3} \mathrm{~N}$ is acting. The safe stress in the parts are shear stress $=60 \mathrm{~N} / \mathrm{mm}^{2}$, Tensile stress $=80 \mathrm{~N} / \mathrm{mm}^{2}$, and crushing stress $=40 \mathrm{~N} / \mathrm{mm}^{2}$.	06
	Answer: Given Data: $\begin{aligned} P & =40 \times 10^{3} \mathrm{~N} \\ \sigma_{s} & =60 \mathrm{~N} / \mathrm{mm}^{2} \\ \sigma_{\mathrm{t}} & =80 \mathrm{~N} / \mathrm{mm}^{2} \\ \sigma_{\mathrm{c}} & =40 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ i. Find Diameter of rod:- $\begin{aligned} \mathrm{P} & =\frac{\pi}{4} \mathrm{~d}^{2} \sigma_{\mathrm{t}} \\ 40 \times 10^{3} & =\frac{\pi}{4} \mathrm{~d}^{2} \times 80 \\ \mathrm{~d} & =25.23 \mathrm{~mm} \\ \mathbf{d} & =\square \mathbf{2 6} \mathbf{~ m m} \end{aligned}$ ii. Find dimensions of fork end, eye end and knuckle pin by empirical relations:- 1. Diameter of knuckle pin 2. Outer diameter of eye end 3. Diameter of knuckle pin head or collar 4. Thickness of eye end 5. Thickness of forked end 6. Thickness of collar or head $\begin{gathered} \mathrm{d}_{1}=\mathrm{d}=26 \mathrm{~mm} \\ \mathrm{~d}_{2}=2 \mathrm{~d}=52 \mathrm{~mm} \\ \mathrm{~d}_{3}=1.5 \mathrm{~d}=39 \mathrm{~mm} \\ \mathrm{t}=1.25 \mathrm{~d}=32.5 \mathrm{~mm} \\ \mathrm{t}_{1}=0.75 \mathrm{~d}=19.5 \mathrm{~mm} \\ \mathrm{t}_{2}=0.5 \mathrm{~d}=13 \mathrm{~mm} \end{gathered}$ iii. Induced stress in knuckle pin:- Therefore Design is safe. iv. Induced stresses in eye end:- 1. Failure in tension: $\begin{aligned} & \therefore \mathrm{P}=\left(\mathrm{d}_{2}-\mathrm{d}_{1}\right) \mathrm{t} \times \sigma_{\mathrm{t}} \\ & \therefore 40 \times 10^{3}=(52-26) 32.5 \times \sigma_{\mathrm{t}} \\ & \therefore \sigma_{\mathrm{t}}=47.33 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<\text { Permissible tensile stress } \end{aligned}$	01

		Therefore Design is safe. 2. Failure in shear: $\begin{gathered} \therefore \mathrm{P}=\left(\mathrm{d}_{2}-\mathrm{d}_{1}\right) \mathrm{t} \times \sigma_{\mathrm{s}} \\ \therefore 40 \times 10^{3}=(52-26) 32.5 \times \sigma_{\mathrm{s}} \\ \therefore \sigma_{\mathrm{s}}=47.33 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<\text { Permissible shear stress } \end{gathered}$ Therefore Design is safe. 3. Failure in crushing: $\begin{aligned} & \therefore \mathrm{P}=\mathrm{d}_{1} \mathrm{t} \times \sigma_{\mathrm{c}} \\ & \therefore 40 \times 10^{3}=26 \times 32.5 \times \sigma_{\mathrm{c}} \\ & \therefore \sigma_{\mathrm{c}}=47.33 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}>\text { Permissible crushing stress } \end{aligned}$ Therefore Design is unsafe. Redesign it, $\begin{aligned} & \therefore 40 \times 10^{3}=26 \times \mathrm{t} \times 40 \\ & \mathrm{t}=\mathbf{3 9 \mathrm { mm }} \end{aligned}$ v. Induced stresses in forked end:- 1. Failure in tension: $\begin{aligned} \therefore \mathrm{P}= & 2\left(\mathrm{~d}_{2}-\mathrm{d}_{1}\right) t_{1} \times \sigma_{\mathrm{t}} \\ & \therefore 40 \times 10^{3}=2(52-26) 19.5 \times \sigma_{\mathrm{t}} \\ & \therefore \sigma_{\mathrm{t}}=39.44 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<\text { Permissible tensile stress } \end{aligned}$ Therefore Design is safe. 2. Failure in shear: Therefore Design is safe. $\begin{aligned} & \therefore \mathrm{P}=2\left(\mathrm{~d}_{2}-\mathrm{d}_{1}\right) t_{1} \times \sigma_{\mathrm{s}} \\ & \quad \therefore 40 \times 10^{3}=2(52-26) 19.5 \times \sigma_{\mathrm{s}} \\ & \quad \therefore \sigma_{\mathrm{s}}=39.44 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<\text { Permissible shear stress } \end{aligned}$ 3. Failure in crushing: $\begin{aligned} & \therefore \mathrm{P}=2\left(\mathrm{~d}_{2}-\mathrm{d}_{1}\right) t_{1} \times \sigma_{\mathrm{c}} \\ & \therefore 40 \times 10^{3}=2 \times 26 \times 19.5 \times \sigma_{\mathrm{c}} \\ & \therefore \sigma_{\mathrm{c}}=39.44 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<\text { Permissible crushing stress } \end{aligned}$ Therefore Design is safe.	1/2
2		Attempt any four of the following:	16
	a)	Derive the relation for torque to be transmitted by single plate clutch considering uniform wear conditions.	04
		Answer: Design procedure of single plate clutch using wear condition:-	04

	$\delta W=p \cdot 2 \pi r \cdot d r=\frac{C}{r} \times 2 \pi r \cdot d r=2 \pi C \cdot d r$ \therefore Total force acing on the friction surface, or $\begin{aligned} W & =\int_{r_{2}}^{r_{1}} 2 \pi C d r=2 \pi C\left[r r_{r_{2}}^{r_{1}}=2 \pi C\left(r_{1}-r_{2}\right)\right. \\ C & =\frac{W}{2 \pi\left(r_{1}-r_{2}\right)} \end{aligned}$ We know that the frictional torque acting on the ring, $T_{r}=2 \pi \mu \cdot p \cdot r^{2} \cdot d r=2 \pi \mu \times \frac{C}{r} \times r^{2} \cdot d r=2 \pi \mu \cdot C r \cdot d r \quad \ldots(\because p=C / r)$ \therefore Total frictional torque acting on the friction surface (or on the clutch), $\begin{aligned} T & =\int_{r_{2}}^{r_{1}} 2 \pi \mu C \cdot r \cdot d r=2 \pi \mu C\left[\frac{r^{2}}{2}\right]_{r_{2}}^{r_{1}} \\ & =2 \pi \mu \cdot C\left[\frac{\left(r_{1}\right)^{2}-\left(r_{2}\right)^{2}}{2}\right]=\pi \mu \cdot C\left[\left(r_{1}\right)^{2}-\left(r_{2}\right)^{2}\right] \\ & =\pi \mu \times \frac{W}{2 \pi\left(r_{1}-r_{2}\right)}\left[\left(r_{1}\right)^{2}-\left(r_{2}\right)^{2}\right]=\frac{1}{2} \times \mu \cdot W\left(r_{1}+r_{2}\right)=\mu \cdot W \cdot R \\ R & =\frac{r_{1}+r_{2}}{2}=\text { Mean radius of the friction surface. } \end{aligned}$	
b)	Define the terms: i) Fatigue and ii) Endurance limit with suitable example.	04
	Answer: i) Fatigue: When the system or element is subjected to fluctuating (repeated) loads, the material of system or element tends to fails below yield stresses by the formation of progressive crack this failure is called as fatigue. The failure may occur without prior indication. The fatigue of material is affected by the size of component, relative magnitude of static and fluctuating load and number of load reversals. ii) Endurance limit: It is defined as maximum value of the completely reversed bending stress which a polished standard specimen can withstand without failure, for infinite number of cycles (usually 10^{7} cycles). Example. For most ferrous materials Endurance limit (Se) is set as the cyclic stress level that the material can sustain for 10 million cycles.	02

c)	List No. of different factors to be consider to find design load and explain any two of them.	04
	Answer: List of Factors to be consider finding design load :(List 2 marks) 1.Service factor (SF) 2. Overload factor 3. Velocity Factor 4. Factor of Safety Explanation: (Any two- 2marks) 1. Service factor (SF): Service factor is described the service limit of the component for definite period of cycle. It is expressed usually a number greater than one: a SF of 1.15 means the item can take 15 percent more load than its rated capacity without breakdown. $\mathrm{T}_{\max }=\text { Service factor } \times \mathrm{T}_{\text {average }}$ 2. Overload factor: The overload factor makes allowance for the externally applied loads which are in excess of the nominal tangential load. In determining the overload factor, consideration should be given to the fact that many prime movers and driven equipment, individually or in combination, develop momentary peak torques appreciably greater than those determined by the nominal ratings of either the prime mover or the driven equipment. There are many possible sources of overload which should be considered. Some of these are: system vibrations, acceleration torques, over speeds, variations in system operation, split path load sharing among multiple prime movers, and changes in process load conditions. 3. Velocity Factor: This factor is considered in design of gears. It depends on velocity of operating gears. It is represented by C_{v}. Permissible working stress is obtained as follows: $\sigma_{\mathrm{wp}}=\sigma_{\mathrm{p}} \times \mathrm{C}_{\mathrm{v}}$ Where, $\begin{aligned} & \sigma_{\mathrm{wp}}=\text { Permissible working stress } \\ & \sigma_{\mathrm{p}}=\text { Permissible stress } \\ & C_{\mathrm{v}}=\text { Velocity factor } \end{aligned}$ 4. Factor of Safety: Factor of safety is defined as the ratio of the maximum stress (yield point stress for ductile material) to the working stress or design stress. In case of ductile materials- $\text { Factor of safety }=\frac{\text { Yield point stress }}{\text { Working or design stress }}$	02 02
d)	Design a propeller shaft to transmit 5 kW at 5000 r.p.m. with gear box reduction 16:1. Assume permissible shear stress for shaft material is $45 \mathrm{~N} / \mathrm{mm}^{2}$.	04

	Answer: Given Data: $\begin{array}{ll} \mathrm{P}=5 \times 10^{3} \mathrm{~W}, & \mathrm{~N}=5000 \mathrm{rpm} \\ \mathrm{G}_{1}=16: 1, & \sigma_{\mathrm{s}}=45 \mathrm{~N} / \mathrm{mm}^{2} \end{array}$ Now torque produced by the engine, $\begin{gathered} P=\frac{2 \pi N T_{e}}{60} \\ 5 \times 10^{3}=\frac{2 \pi \times 5000 \times T_{e}}{60} \\ \boldsymbol{T}_{\boldsymbol{e}}=\mathbf{9 . 5 4 9} \mathbf{N m}=\mathbf{9 . 5 4 9} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{\mathrm { Nmm }} \end{gathered}$ Torque transmitted by the propeller shaft, $\begin{aligned} & \mathrm{T}_{\mathrm{p}}=\mathrm{T}_{\mathrm{e}} \times \mathrm{G}_{1} \\ & \mathrm{~T}_{\mathrm{p}}=9.549 \times 10^{3} \times 16 \\ & \mathrm{~T}_{\mathbf{p}}=\mathbf{1 5 2 . 7 8} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{~ N m m} \end{aligned}$ Diameter of propeller shaft, $\begin{gathered} T_{p}=\frac{\pi}{16} \sigma_{s} d^{3} \\ 152.78 \times 10^{3}=\frac{\pi}{16} 45 d^{3} \\ \mathbf{d}=\mathbf{2 5 . 8 6} \mathbf{m m} \\ \mathbf{d}=\mathbf{2 6} \mathbf{~ m m} \end{gathered}$	01
e)	Explain maximum principal stress theory of failure.	04
	Answer: Statement: According to this theory, the failure occurs at a point in a member when the maximum normal stress in a bi-axial stress system reaches the limiting strength of the material in a simple tension test. The maximum or normal stress in a bi-axial stress system is given by, $\begin{aligned} \sigma_{t 1} & =\frac{\sigma_{y t}}{F \cdot S}, \text { for ductile materials } \\ & =\frac{\sigma_{u}}{F \cdot S}, \text { for brittle materials } \\ \sigma_{y t} & =\text { Yield point stress in tension as determined from simple tension } \\ & \text { test, and } \\ \sigma_{u} & =\text { Ultimate stress. } \end{aligned}$ Brittle material which are relatively strong in shear but weak in tension or	02 01

		compression, this theory are generally used.	01
3		Attempt any four of the following:	16
	a)	Describe the design procedure of a rear axle.	04
		Ans: Design procedure of a fully floating rear axle: The rear axle is designed on the basis of shaft design. By using the torsional equation, $\frac{T_{R A}}{J_{R A}}=\frac{\sigma_{s}}{r}$ Where, After simplifying the equations, $\begin{aligned} & T_{R A}=\frac{\pi}{16} \sigma_{s} d^{3} \ldots \ldots \ldots \ldots \ldots . \text { For solid shaft } \\ & T_{R A}=\frac{\pi}{16} \sigma_{s} d_{o}^{3}\left(1-k^{4}\right) \ldots \ldots \ldots \ldots \text { For hollow shaft } \\ & \quad k=\frac{d_{i}}{d_{o}} \\ & \mathrm{~d}_{\mathrm{i}}=\text { Inner diameter of shaft } \\ & \mathrm{d}_{\mathrm{o}}=\text { Outer diameter of shaft } \end{aligned}$ From these equations, we can find out the diameter of rear axle of shaft.	04
	b)	Draw and explain the stress strain diagram for ductile material.	04
		Answer: (Figure- 2mark and explanation-2 mark) Stress strain curve for ductile material has different regions and points. i. Proportional limit ii. Elastic limit iii. Yield point iv. Ultimate stress point v. Fracture or breaking point.	

	 i. Proportional $\operatorname{Limit}(\mathbf{A}):$ It is the region in the strain curve which obeys Hooke's law i.e. within elastic limit the stress is directly proportion to the strain produced in the material. In this limit the ratio of stress with strain gives us proportionality constant known as young's modulus. The point OA in the graph is called the proportional limit. ii. Elastic Limit (B): It is the point in the graph up to which the material returns to its original position when the load acting on it is completely removed. Beyond this limit the material cannot return to its original position and a plastic deformation starts to appear in it. The point \mathbf{B} is the Elastic limit in the graph. iii. Yield Point or Yield Stress Point (C, D): Yield point in a stress strain diagram is defined as the point at which the material starts to deform plastically. After the yield point is passed there is permanent deformation develops in the material and which is not reversible. There are two yield points and it is upper yield point and lower yield point. The stress corresponding to the yield point is called yield point stress. The point \mathbf{C} is the upper yield stress point and \mathbf{D} is the lower yield stress point. iv. Ultimate Stress Point (E): It is the point corresponding to the maximum stress that a material can handle before failure. It is the maximum strength point of the material that can handle the maximum load. Beyond this point the failure takes place. Point \mathbf{E} in the graph is the ultimate stress point. v. Fracture or Breaking Point (F): It is the point in the stress strain curve at which the failure of the material takes place. The fracture or breaking of material takes place at this point. The point \mathbf{F} is the breaking point in the graph.	02
c)	Describe the Nipping of leaf springs with neat sketch.	04
	Answer: (Figure- 2mark and explanation-2 mark) Nipping:	

	The initial gap ' C ' between the extra full length leaf and graduated length leaf before the assembly is called as 'Nip'. Such pre-stressing, achieved by a difference in radii of curvature is known as 'Nipping'. It is seen that, stress in full length leaves is 50% greater than the stress in graduated leaves. In order to make best use of material; it is necessary that all the leaves must be equally stressed. This can be achieved by in following two ways: i) By making full length leaves of smaller thickness than graduated leaves. In this way the full length leaves will induce a smaller bending stress due to small distance from neutral axis to edge of the leaf. ii) By giving a greater radius of curvature to the full length leaves than graduated leaves before leaves are assembled to form a spring. By doing so, gap or clearance will be left between the leaves.	02
d)	Design rectangular key for a shaft of 50 mm diameter. The allowable shearing and crushing stresses for key material are $42 \mathrm{~N} / \mathrm{mm}^{2}$ and $70 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. For shaft to resist torque 5000 Nm .	04
	Answer: Given data: $\begin{aligned} & \mathrm{d}=50 \mathrm{~mm} \\ & \sigma_{\mathrm{sk}}=42 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\mathrm{ck}}=70 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{~T}=5000 \mathrm{Nm}=5 \times \mathbf{1 0}^{6} \mathrm{Nmm} \end{aligned}$ i) Length of key: $\begin{aligned} & \mathrm{l}=1.57 \mathrm{~d} \\ & \mathrm{l}=1.57 \times 50 \\ & \mathbf{I}=\mathbf{7 8 . 5}=\square \mathbf{7 9} \mathrm{mm} \end{aligned}$ ii) Width of key by considering failure in shear: $T=l \times w \times \sigma_{s k} \times \frac{d}{2}$	02

		$\begin{aligned} & 5 \times 10^{6}=79 \times w \times 42 \times \frac{50}{2} \\ & \therefore w=60.27 \mathrm{~mm} \quad \therefore w \cong 61 \mathrm{~mm} \end{aligned}$ iii) Thickness of key by considering failure in crushing: $\begin{aligned} & T=l \times \frac{t}{2} \times \sigma_{c k} \times \frac{d}{2} \\ & 5 \times 10^{6}=79 \times \frac{t}{2} \times 70 \times \frac{50}{2} \\ & \therefore t=72.33 \mathrm{~mm} \quad \therefore t \cong 73 \mathrm{~mm} \end{aligned}$	01
	e)	Find the diameter of a solid shaft to transmit 20 kW at 200 rpm . The ultimate shear stress for the shaft may be taken as $360 \mathrm{~N} / \mathrm{mm}^{2}$ and the factor of safety as 8 .	04
		Answer: Given Data: $\begin{aligned} & \mathrm{P}=20 \mathrm{~kW}=20 \times 10^{3} \mathrm{~W} \\ & \mathrm{~N}=200 \mathrm{rpm} \\ & \sigma_{\mathrm{s}}=360 / 8=45 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Now the torque transmitted by the engine T:- $\begin{gathered} \mathrm{P}=\frac{2 \pi N T}{60} \\ 20 \times 10^{3}=\frac{2 \times 3.14 \times 200 \times T}{60} \\ \quad T=955.41 \mathrm{Nm}=955.41 \times 10^{3} \mathrm{Nmm} \end{gathered}$ Let, $\mathrm{d}=$ diameter of rear axle, $\begin{aligned} & \mathrm{T}=\frac{\pi}{16} f_{s} d^{3} \\ & \\ & \quad 955.41 \times 10^{3}=\frac{\pi}{16} \times 45 \times d^{3} \\ & d^{3}=108130.74 \\ & \quad d=47.64 \mathrm{~mm} \cong 48 \mathrm{~mm} \end{aligned}$	02
4	(A)	Attempt any four of the following:	12
	a)	Define standardization and state the four advantages of it.	04
		Answer: (Defination- 2mark, Advantages-2 mark) Standardization: - It is defined as obligatory norms to which various characteristics	

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
of a product should conform. The characteristics include materials, dimensions and shape of the component, method of testing and method of marking, packing and storing of the product. \\
Advantages of Standardization:- (Any four) \\
1. Mass production is easy. \\
2. Rate of production increases. \\
3. Reduction in labour cost. \\
4. Limits the variety of size and shape of product. \\
5. Overall reduction in cost of production. \\
6. Improves overall performance, quality and efficiency of product. \\
7. Better utilization of labour, machine and time.
\end{tabular} \& 02
02 \\
\hline b) \& Define a lever. Describe three basic types of lever. \& 04 \\
\hline \& \begin{tabular}{l}
Answer: (Defination-1 mark, Figure-1 mark, explanation with example-2 mark) \\
Def \(^{\mathrm{n}}\) :- A lever is a rigid rod or a bar capable of turning about a fixed point called fulcrum. \\
Types of leaver: First type, second type and third type levers shown in figure at (a), (b) and (c) respectively. The load W and the effort P may be applied to the lever in three different ways as shown in Figure. \\
(a) First type of lever.
 \\
(b) Second type of lever. \\
(c) Third type of lever. \\
First type lever: In the first type of levers, the fulcrum is in between the load and effort. In this case, the effort arm is greater than load arm; therefore mechanical advantage obtained is more than one. \\
Examples: Such type of levers are commonly found in bell cranked levers used in railway signaling arrangement, rocker arm in internal combustion engines, handle of a hand pump, hand wheel of a punching press, beam of a balance, foot lever etc. \\
Second type lever: In the second type of levers, the load is in between the fulcrum and effort. In this case, the effort arm is more than load arm; therefore the mechanical advantage is more than one. \\
Examples: It is found in levers of loaded safety valves. \\
Third type lever: In the third type of levers, the effort is in between the fulcrum and load. Since the effort arm, in this case, is less than the load arm, therefore the mechanical advantage is less than one. \\
Examples: The use of such type of levers is not recommended in engineering practice. However a pair of tongs, the treadle of a sewing machine etc. are examples of this type of lever.
\end{tabular} \& 01

01

02

\hline c) \& A single plate clutch with both sides effective has outer and inner diameter 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the contact surface is not exceed $0.1 \mathrm{~N} / \mathrm{mm}^{2}$. If the coefficient of friction is 0.3 , determine the power transmitted by clutch at a speed of 2500 r.p.m. \& 04

\hline
\end{tabular}

	Answer: Given Data: $\begin{aligned} & \mathrm{d}_{1}=300 \mathrm{~mm}, \mathrm{r}_{1}=\mathrm{d} 1 / 2=150 \mathrm{~mm} \\ & \mathrm{~d}_{2}=200 \mathrm{~mm}, \mathrm{r}_{2}=\mathrm{d} 2 / 2=100 \mathrm{~mm} \\ & \mathrm{P}_{\max }=0.1 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mu=0.3 \\ & \mathrm{~N}=2500 \mathrm{rpm} \end{aligned}$ Since the intensity of pressure is maximum at inner radius, therefore, for uniform wear, $\begin{gathered} \mathbf{P}_{\max } \times \mathbf{r}_{2}=\mathbf{c} \\ \mathrm{c}=0.1 \times 100 \\ \mathbf{c}=\mathbf{1 0} \mathbf{N} / \mathbf{m m} \end{gathered}$ We know that, axial thrust, $\begin{aligned} & \mathbf{W}=\mathbf{2 \pi c}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\ & \mathrm{W}=2 \pi \times 10 \times(150-100) \\ & \mathbf{W}=\mathbf{3 1 4 2} \mathbf{N} \end{aligned}$ And mean radius of friction, $\begin{aligned} & \mathbf{R}=\left(\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{2}\right) / \mathbf{2} \\ & \mathrm{R}=(150+100) / 2 \\ & \mathbf{R}=\mathbf{1 2 5} \mathbf{~ m m} \end{aligned}$ We know that, torque transmitted, $\begin{aligned} & \mathbf{T}=\mathbf{n} \cdot \boldsymbol{\mu} \cdot \mathbf{W} \cdot \mathbf{R} \\ & \mathrm{T}=2 \times 0.3 \times 3142 \times 125 \\ & \mathrm{~T}=235650 \mathrm{~N}-\mathrm{mm} \\ & \mathbf{T}=\mathbf{2 3 5 . 6 5} \mathbf{N}-\mathbf{m} \end{aligned}$ Power transmitted by clutch, $\begin{aligned} & \mathbf{P}=(\mathbf{2} \boldsymbol{\pi} \mathbf{N} \mathbf{T}) / \mathbf{6 0} \\ & \mathrm{P}=(2 \times \pi \times 2500 \times 235.65) / 60 \\ & \mathbf{P}=\mathbf{6 1 6 9 3} \mathbf{W} \\ & \mathbf{P}=\mathbf{6 1 . 6 9 3} \mathbf{k} \mathbf{W} \end{aligned}$	01 01 01 01
d)	Describe stepwise procedure for designing the piston crown of an engine for bending strength and thermal considerations.	04
	Answer: Design of Piston Head or Crown: The piston head or crown is designed keeping in view the following two main considerations, i.e. 1. It should have adequate strength to withstand the straining action due to pressure	

	of explosion inside the engine cylinder, and 2. It should dissipate the heat of combustion to the cylinder walls as quickly as possible. I) On the basis of Strength:- The thickness of the piston head $\left(t_{\mathrm{H}}\right)$, according to Grashoff's formula is given by $t_{\mathrm{H}}=\sqrt{\frac{3 p \cdot D^{2}}{16 \sigma_{t}}}(\text { in } \mathrm{mm})$ $p=$ Maximum gas pressure or explosion pressure in $\mathrm{N} / \mathrm{mm}^{2}$, $D=$ Cylinder bore or outside diameter of the piston in mm , and $\sigma_{t}=$ Permissible bending (tensile) stress for the material of the piston in MPa or $\mathrm{N} / \mathrm{mm}^{2}$. It may be taken as 35 to 40 MPa for grey cast iron, 50 to 90 MPa for nickel cast iron and aluminium alloy and 60 to 100 MPa for forged steel. II) On the basis of Heat Dissipation:- The thickness of the piston head should be such that the heat absorbed by the piston due combustion of fuel is quickly transferred to the cylinder walls. Treating the piston head as a flat circular plate, its thickness is given, $t_{\mathrm{H}}=\frac{H}{12.56 k\left(T_{\mathrm{C}}-T_{\mathrm{E}}\right)}(\mathrm{in} \mathrm{~mm})$ where $H=$ Heat flowing through the piston head in kJ / s or watts, $k=$ Heat conductivity factor in $\mathrm{W} / \mathrm{m} /{ }^{\circ} \mathrm{C}$. Its value is $46.6 \mathrm{~W} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ for grey cast iron, $51.25 \mathrm{~W} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ for steel and $174.75 \mathrm{~W} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ for aluminium alloys. $T_{\mathrm{C}}=$ Temperture at the centre of the piston head in ${ }^{\circ} \mathrm{C}$, and $T_{\mathrm{E}}=$ Temperature at the edges of the piston head in ${ }^{\circ} \mathrm{C}$. The temperature difference $\left(T_{\mathrm{C}}-T_{\mathrm{E}}\right)$ may be taken as $220^{\circ} \mathrm{C}$ for cast iron and $75^{\circ} \mathrm{C}$ for aluminium. The heat flowing through the positon head (H) may be deternined by the following expression, i.e., $H=C \times H C V \times m \times B . P .(\text { in } \mathrm{kW})$ where $C=$ Constant representing that portion of the heat supplied to the engine which is absorbed by the piston. Its value is usually taken as 0.05 . $H C V=$ Higher calorific value of the fuel in $\mathrm{kJ} / \mathrm{kg}$. It may be taken as $45 \times 10^{3} \mathrm{~kJ} / \mathrm{kg}$ for diesel and $47 \times 10^{3} \mathrm{~kJ} / \mathrm{kg}$ for petrol, $m=$ Mass of the fuel used in kg per brake power per second, and B.P. = Brake power of the engine per cylinder	02
(B)	Attempt any one of the following:	06
a)	Explain design procedure of a connecting rod.	06

Answer: (Figure-2mark and any two points of procedure-4 marks) Design of Connecting Rod:

1. Dimensions of cross-section of the connecting rod According to Rankine's formula,

$$
W_{\mathrm{B}}=\frac{\sigma_{c} \cdot A}{1+a\left(\frac{L}{k_{x x}}\right)^{2}}
$$

Let $A=$ Cross-sectional area of the connecting rod=11 $t 2$
$L=$ Effective length of the connecting rod,
$\sigma c=$ Crippling or Buckling stress,
$W \mathrm{~B}=$ Buckling load,
$a=$ Rankine's constant
$\mathrm{kxx} 2=3.18 \mathrm{t} 2$
from this relation t (thickness of the flange and web of the section) can be determined.

Width of the section, $B=4 t$ and
Depth or height of the section, $H=5 t$
The dimensions $B=4 t$ and $H=5 t$, as obtained above by applying the Rankine's formula, are at the middle of the connecting rod.

The width of the section (B) is kept constant throughout the length of the connecting rod, but the depth or height varies.

The depth near the small end (or piston end) is taken as $\boldsymbol{H 1}=\mathbf{0 . 7 5} \boldsymbol{H}$ to $\mathbf{0 . 9 H}$
The depth near the big end (or crank end) is taken $\boldsymbol{H} \mathbf{2}=\mathbf{1 . 1 H}$ to $\mathbf{1 . 2 5 H}$.
2. Dimensions of the at the big end and small end of connecting rod

Maximum gas force,

$$
F_{\mathrm{L}}=\frac{\pi D^{2}}{4} \times p
$$

Where, $D=$ Cylinder bore or piston diameter in mm , and $p=$ Maximum gas pressure in $\mathrm{N} / \mathrm{mm} 2$

Let $d c=$ Diameter of the crank pin in mm,

$$
\begin{aligned}
& Z_{\mathrm{C}}=\frac{b_{c}\left(t_{c}\right)^{2}}{6} \\
& \text { stress, } \quad \sigma_{b}=\frac{M_{\mathrm{C}}}{Z_{\mathrm{C}}}=\frac{F_{\mathrm{I}} \times x}{6} \times \frac{6}{b_{c}\left(t_{c}\right)^{2}}=\frac{F_{\mathrm{I}} \times x}{b_{c}\left(t_{c}\right)^{2}}
\end{aligned}
$$

From this expression, the value of $t c$ is obtained.
Design fulcrum pin of rocker arm which carries load of 5000 N and has equal lengths
b) of load arm. The lengths of arms are 250 mm . The angle between the arms is 160°.

The allowable bearing pressure is $7 \mathrm{~N} / \mathrm{mm}^{2}$.
Answer:

Given data:

$$
\begin{aligned}
& \theta=160^{0} \\
& \mathrm{P}=5000 \mathrm{~N}=5 \mathrm{kN} \\
& \mathrm{~L}_{1}=\mathrm{L}_{2}=250 \mathrm{~mm} \\
& \mathrm{P}_{\mathrm{b}}=7 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Two arms of rocker arm equal,
So, $\quad L_{1}=L_{2}$
$\therefore \mathrm{P}=\mathrm{W}=5 \mathrm{kN}$
\therefore Reaction at fulcrum pin,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{f}} & =\sqrt{\mathrm{P}^{2}+\mathrm{W}^{2}-2 \mathrm{PW} \cos \theta} \\
& =\sqrt{5^{2}+5^{2}-(2 \times 5 \times 5 \times \cos 160)} \\
\mathrm{R}_{\mathrm{f}} & =9.848 \mathrm{kN}=9.848 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

\therefore Diameter of fulcrum pin,

$$
\mathrm{R}_{\mathrm{f}}=d \times l \times \mathrm{P}_{\mathrm{b}}
$$

Where,

$$
l=1.25 d
$$

$$
\therefore 9.848 \times 10^{3}=\mathrm{d} \times 1.25 \mathrm{~d} \times 7
$$

$$
\therefore \mathrm{d}=33.54 \mathrm{~mm}
$$

$$
\therefore \mathrm{d} \cong 34 \mathrm{~mm}
$$

\therefore Length of fulcrum pin,

$$
\begin{gathered}
l=1.25 \mathrm{~d}=1.25 \times 34=42.5 \mathrm{~mm} . \\
l \cong 43 \mathrm{~mm}
\end{gathered}
$$

Q. 5		Attempt any two of the following:	16
Q. 5	a)	Design a socket and spigot type cotter joint which has to withstand a load of $20 \mathrm{X} 10^{3} \mathrm{~N}$. Take safe tensile stress $56 \mathrm{~N} / \mathrm{mm}^{2}$, shear stress $40 \mathrm{~N} / \mathrm{mm}^{2}$ and crushing stress $40 \mathrm{~N} / \mathrm{mm}^{2}$.	8
		$\begin{aligned} & \text { Given Data: } \\ & \qquad \begin{array}{l} \text { P=20x } 10^{3} \mathrm{KN} \\ f_{t}=56 \mathrm{~N} / \mathrm{mm}^{2} \\ f_{s}=40 \mathrm{~N} / \mathrm{mm}^{2} \\ f_{c}=40 \mathrm{~N} / \mathrm{mm}^{2} \end{array} \\ & \text { Let }^{d}=\text { diameter of rod } \\ & d_{1}=\text { outer diameter of socket } \\ & d_{2}=\text { outer diameter of spigot } \\ & d_{3}=\text { diameter of spigot collar } \\ & d_{4}=\text { diameter of socket collar } \\ & b=\text { width of cotter } \\ & c=\text { width of socket collar } \\ & e=\text { width of socket neck } \\ & t=\text { thickness of cotter } \\ & t_{1}=\text { thickness of spigot collar } \\ & l=\text { length of cotter } \end{aligned}$ 1. Find dia. Of rod " d " considering failure in tension of rod We know that, $\quad P=\frac{\pi}{4}\left(d^{2}\right) \mathrm{f}_{\mathrm{t}}$ $\begin{array}{ll} \therefore & d^{2}=\frac{4}{\pi} \times P \times \frac{1}{f_{t}} \\ \therefore & d^{2}=\frac{4}{\pi} \times \frac{20 \times 10^{3}}{56} \end{array}$	

		$\begin{aligned} & \mathrm{d}=21.32 \mathrm{~mm} \\ & \mathrm{~d}=22 \mathrm{~mm} \end{aligned}$ 2. Find outside diameter of spigot " d_{2} " considering failure in tension We know that $\quad P=\left[\frac{\pi}{4}\left(d_{2}{ }^{2}\right)-d_{2 x t}\right] f_{t}$ $\begin{aligned} \mathrm{P} & =\left[\frac{\pi}{4}\left(\mathrm{~d}_{2}^{2}\right)-\frac{\mathrm{d}_{2}^{2}}{4}\right] \mathrm{f}_{\mathrm{t} . \ldots} \ldots \cdots \cdots \cdots \cdots \cdots\left(\mathrm{t}=\frac{\mathrm{d}_{2}^{2}}{4}\right] \\ \therefore 20 \times 10^{3} & =\left[\frac{\pi}{4}\left(\mathrm{~d}_{2}^{2}\right)-\frac{\mathrm{d}_{2}^{2}}{4}\right] \times 56 \\ \frac{20 \times 10^{3} \times 4}{56} & =\pi \mathrm{xd}_{2}^{2}-\mathrm{d}_{2}^{2} \\ \frac{20 \times 10^{3} \times 4}{56} & =\mathrm{d}_{2}^{2}[\pi-1] \\ \mathrm{d}_{2} & =25.82 \mathrm{~mm} \\ \mathrm{~d}_{2} & =26 \mathrm{~mm} \end{aligned}$ 3. Check the rushing stress considering failure at cotter in crushing We Know that $\begin{aligned} & \mathrm{P}=\left[\mathrm{d}_{2} \mathrm{xt}\right] \mathrm{f}_{\mathrm{c}} \\ & \therefore \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{P}}{\mathrm{~d}_{2} \times \mathrm{t}} \quad \therefore \mathrm{f}_{\mathrm{c}}=\frac{20 \times 10^{3}}{26 \times\left[\frac{2^{6}}{4}\right]} \\ & \therefore \mathrm{f}_{\mathrm{c}}=118.34 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Permissible stress is less than induced stress, so Design is unsafe for safety redesign " d_{2} "and " t " We know that, $\begin{aligned} \mathrm{P} & =\mathrm{d}_{2} \times \frac{d_{2}}{4} \times \mathrm{f}_{\mathrm{c}} \\ 20 \times 10^{3} & =\frac{d_{2}^{2}}{4} \times 40 \\ \therefore \mathrm{~d}_{2} & =44.72 \mathrm{~mm} \\ \mathrm{~d}_{2} & =45 \mathrm{~mm} \end{aligned}$	

$$
\begin{aligned}
\mathrm{t} & =\frac{d_{2}}{4} \\
\therefore \mathrm{t} & =11.25 \mathrm{~mm} \\
\mathrm{t} & =11.50 \mathrm{~mm}
\end{aligned}
$$

4. Find outside diameter of socket " d 1 " considering failure socket in tension We know that,

$$
\begin{aligned}
\mathrm{P} & =\left[\frac{\pi}{4}\left(d_{1}^{2}-d_{2}^{2}\right)-\left[\mathrm{d}_{1}-\mathrm{d}_{2}\right] \times \mathrm{t}\right] \mathrm{f}_{\mathrm{t}} \\
20 \times 10^{3} & =\left[\frac{\pi}{4}\left(d_{1}^{2}-45^{2}\right)-\left[\mathrm{d}_{1}-45\right] \times 11.5\right] \times 56 \\
20 \times 10^{3} & =\left[\frac{\pi}{4} d_{1}^{2}-1590.43-11.5 \mathrm{~d}_{1}+517.5\right] \times 56 \\
357.14 & =0.785 d_{1}^{2}-11.5 \mathrm{~d}_{1}-1072.93
\end{aligned}
$$

$$
0.785 d_{1}^{2}-11.5 d_{1}-1430.07=0
$$

$$
d_{1}^{2}-14.65 d_{1}-1821.75=0
$$

In above equation
$\mathrm{d}_{1}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a},(\mathrm{a}=1, \mathrm{~b}=-14.65, \mathrm{c}=-1821.75)$
$\mathrm{d}_{1}=\frac{14.65 \pm \sqrt{(-14.65)^{2}-4(-1821.75)}}{2}$
$\mathrm{d}_{1}=50.63 \mathrm{~mm}$
$\mathrm{d}_{1}=51 \mathrm{~mm}$
5. Find the diameter of spigot collar considering failure in crushing We know that,

$$
\begin{aligned}
\mathrm{P} & =\frac{\pi}{4}\left[d_{3}^{2}-d_{2}^{2}\right] \mathrm{f}_{\mathrm{c}} \\
\frac{20 \times 10^{3}}{40} & =\frac{\pi}{4}\left[d_{3}^{2}-45^{2}\right] \\
\mathrm{d}_{3} & =51.59 \mathrm{~mm} \\
\mathrm{~d}_{3} & =52 \mathrm{~mm}
\end{aligned}
$$

$\mathrm{d}_{4}=88.47 \mathrm{~mm}$
$\mathrm{d}_{4}=89 \mathrm{~mm}$
7. Find the width of cotter " b " considering failure in shear

We know that,
$\mathrm{P}=2 \times \mathrm{bxtxf}$
$\mathrm{b}=21.74 \mathrm{~mm}$

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\[
\bar{b}=22 \mathrm{~mm}
\] \\
8. Find the thickness of spigot collar " \(\mathrm{t}_{1}\) " by considering failure in shear We know that,
\[
\begin{aligned}
\& \mathrm{P}=\pi \mathrm{xd}_{2} \times \mathrm{t}_{1} \mathrm{f}_{\mathrm{s}} \\
\& \mathrm{t}_{1}=3.53 \mathrm{~mm} \\
\& \mathrm{t}_{1}=4 \mathrm{~mm}
\end{aligned}
\] \\
9. Find the thickness of socket collar " \(c\) " by considering failure in shear We know that,
\[
\begin{aligned}
\& \mathrm{P}=2 \times\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \times \mathrm{Cx} \mathrm{f}_{\mathrm{s}} \\
\& \mathrm{c}=5.68 \mathrm{~mm} \\
\& \mathrm{c}=6 \mathrm{~mm}
\end{aligned}
\] \\
10. Find the distance from cotter slot to end of spigot rod "a" by considering failure in shear \\
We know that,
\[
\begin{aligned}
\& \mathrm{P}=2 \mathrm{xd}_{2} \times \mathrm{axf} \\
\& \mathrm{a}=5.55 \mathrm{~mm} \\
\& \mathrm{a}=6 \mathrm{~mm}
\end{aligned}
\] \\
11. Find the length of cotter, \\
We know that,
\[
\begin{aligned}
\& \mathrm{L}=4 \mathrm{~d} \\
\& \mathrm{~L}=88 \mathrm{~mm}
\end{aligned}
\] \\
12. Find the thickness of socket of neck"e"
\[
\begin{aligned}
\& \mathrm{e}=1.2 \mathrm{~d} \\
\& \mathrm{e}=26.4 \mathrm{~mm} \\
\& \mathrm{e}=27 \mathrm{~mm}
\end{aligned}
\]
\end{tabular} \& 1

1

\hline Q. 5 \& b) \& Draw the neat sketch of sliding mesh gear box and write the design procedure for teeth calculation. \& 8

\hline \& \& | Answer: (Sketch - 3 marks, Correct Labeling - 1 Mark, design procedure for teeth calculation-4 marks) |
| :--- |
| Fig: Four speed Sliding Mesh gear box: | \&

\hline
\end{tabular}

		Design procedure for teeth calculation. First gear ratio: $\therefore \mathrm{G}_{1}=\frac{\mathrm{T}_{\mathrm{b}}}{\mathrm{~T}_{\mathrm{a}}} \times \frac{\mathrm{T}_{\mathrm{d}}}{\mathrm{~T}_{\mathrm{c}}}$ Second gear ratio: $\therefore \mathrm{G}_{2}=\frac{\mathrm{T}_{\mathrm{b}}}{\mathrm{~T}_{\mathrm{a}}} \times \frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{e}}}$ Third gear ratio: $\therefore \mathrm{G}_{3}=1: 1$ Reverse gear ratio: $\therefore G_{r}=\frac{T_{b}}{T_{a}} \times \frac{T_{i}}{T_{g}} \times \frac{T_{r}}{T_{i}}$	
Q. 5	c)	Design the piston pin with following data: Maximum pressure on the piston is $4 \mathrm{~N} / \mathrm{mm}^{2}$; diagram of piston 70 mm , Allowable stresses due to bearing is $30 \mathrm{~N} / \mathrm{mm}^{2}$, bending $80 \mathrm{~N} / \mathrm{mm}^{2}$ and shear stress $60 \mathrm{~N} / \mathrm{mm}^{2}$.	

Answer: Given data,
Dia. of piston $=\mathrm{D}=70 \mathrm{~mm}$.
Max. pressure $=P_{\text {max }}=4 \mathrm{~N} / \mathrm{mm}^{2}$
Bearing pressure $\mathrm{P}_{\mathrm{b}}=30 \mathrm{~N} / \mathrm{mm} 2$
Bending stress $=\sigma b=80 \mathrm{~N} / \mathrm{mm}^{2}$
Shearing stress $=\tau=60 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum gas load,

$$
\begin{aligned}
& =\frac{\pi D^{2}}{4} \times \mathrm{P}_{\max } \\
\mathrm{F} & =\frac{\pi(70)^{2}}{4} \times 4 \\
\mathrm{~F} & =\mathbf{1 5 . 3 9 3 8} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{N}
\end{aligned}
$$

1. Design the piston pin on the basis of bearing pressure

Let, $\mathrm{d}_{\mathrm{po}}=$ outer dia. of piston pin
$1_{p}=$ length of piston pin in small end of connecting rod

$$
\begin{aligned}
& 1_{\mathrm{p}}=0.45 \times D=0.45 \times 70 \\
& 1_{\mathrm{p}}=31.5 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}=\mathrm{d}_{\mathrm{po}} \times \mathrm{l}_{\mathrm{p}} \times \mathrm{P}_{\mathrm{b}} \\
& \mathrm{~d}_{\mathrm{po}}=\frac{15.3938 \times 10^{3}}{31.5 \times 30} \\
& \mathrm{~d}_{\mathrm{po}}=16.29 \mathrm{~mm} \\
& \mathbf{d}_{\mathrm{po}}=\mathbf{1 7 m m}
\end{aligned}
$$

2. Designing the piston pin on the basis of bending.
'Bending moment ' M ' is calculated as

$$
\begin{aligned}
& \mathrm{M}=\mathrm{F} \times \frac{D}{8} \\
& \mathrm{M}=\frac{15.3938 \times 10^{3} \times 70}{8} \\
& \mathrm{M}=134.69 \times 10^{3} \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

We know that,

$$
\begin{aligned}
\mathrm{M} & =\frac{\pi}{32} \times \sigma_{\mathrm{b}} \times\left(\mathrm{d}_{\mathrm{po}}\right)^{3} \\
134.69 \times 10^{3} & =\frac{\pi}{32} \times \sigma_{\mathrm{b}} \times(17)^{3} \\
\boldsymbol{\sigma}_{\mathrm{b}} & =\mathbf{2 7 9 . 2 5 8 9} \mathbf{N} / \mathbf{m m}^{2}
\end{aligned}
$$

The induced bending stresses are greater than permissible bending stress $80 \mathrm{~N} / \mathrm{mm} 2$ hence redesign is necessary. Now redesign value of $d_{p o}$

$$
\begin{aligned}
\mathrm{M} & =\frac{\pi}{32} \times \sigma_{\mathrm{b}} \times\left(\mathrm{d}_{\mathrm{po}}\right)^{3} \\
134.69 \times 10^{3} & =\frac{\pi}{32} \times 80 \times\left(\mathrm{d}_{\mathrm{po}}\right)^{3} \\
\mathrm{~d}_{\mathrm{po}} & =25.79 \mathrm{~mm} \\
\mathbf{d}_{\mathrm{po}} & =\mathbf{2 6} \mathbf{~ m m}
\end{aligned}
$$

		3. Designing piston pin on the basis of shear stress. $\begin{aligned} \mathrm{F} & =\frac{2 \pi}{4} \times\left(\mathrm{d}_{\mathrm{po}}\right)^{2} \times \tau \\ 15.39 \times 10^{3} & =\frac{2 \pi}{4} \times(26)^{2} \times \tau \\ \tau & =14.49 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ The induced shear stresses are less than permissible shear stress. Hence Design is safe 4. The total length of piston is taken as $L_{p t}=0.9 D=0.9 \times 70=63 \mathrm{~mm}$	2 1
Q. 6		Attempt any two of the following:	16
Q. 6	a)	A semi-elliptical spring has an overall length of 1 m and sustain a load of 70 KN at its centre. The spring has 3 full length leaves and 15 graduated leaves with a central band of 100 mm width. All the leaves are to be stressed to $400 \mathrm{~N} / \mathrm{mm}^{2}$ when fully loaded. The ratio of total spring depth to that of the width is 2 . Young modulus $\mathrm{E}=0.2 \times 10^{6} \mathrm{~N} / \mathrm{mm}^{2}$. Determine: 1) Thickness and width of the leaves. 2) Initial gap that should be provided between full length and graduated leaves before the band load is applied. 3) The load exerted on the band after the spring is assembled.	8
		Given Data: $\begin{aligned} & 2 \mathrm{~W}=\text { Central load }=70 \mathrm{KN} \\ & \mathrm{~W}=35 \times 10^{3} \mathrm{~N} \end{aligned}$ Overall Length of spring 24=1M $\begin{aligned} \mathrm{L} & =500 \mathrm{~mm}, \ell=100 \mathrm{~mm} \\ \mathrm{n}_{\mathrm{f}} & =03, \mathrm{n}_{\mathrm{g}}=15 \\ \mathrm{n} & =\mathrm{n}_{\mathrm{f}}+\mathrm{n}_{\mathrm{g}}=18 \end{aligned}$ Ratio of total spring depth to width $=2$ $\sigma_{\mathrm{b}}=400 \mathrm{~N} / \mathrm{mm}^{2}$ Modulus of Elasticity $\mathrm{E}=02 \times 10^{6} \mathrm{~N} / \mathrm{mm}^{2}$ 1) Thickness and width of leaves:$t=$ thickness of leaves, $b=$ width of leaves $\mathrm{n}=\mathrm{n}_{\mathrm{f}}+\mathrm{n}_{\mathrm{g}}=15+3=18$	1

		As ratio of spring depth $(\mathrm{n} \times \mathrm{t})$ to width of leaves is 2 $\begin{aligned} \therefore & \frac{\mathrm{n} \times \mathrm{t}}{b}=2 \quad \therefore \frac{18 \times \mathrm{t}}{b}=2 \\ & \mathbf{b}=\mathbf{9 t} \end{aligned}$ Effective length of leaves $\begin{aligned} & 2 \mathrm{~L}=2 \mathrm{~L}_{1}-\ell=1000-100=900 \mathrm{~mm} \\ & \therefore \mathbf{L}=\mathbf{4 5 0 m m} \end{aligned}$ As all leaves are equally stressed $\begin{aligned} & \frac{6 W L}{\mathrm{nb} t^{2}} \quad \therefore 400=\frac{6 \times 35 \times 10^{3} \times 450}{18 \times 9 \mathrm{t} \times t^{2}}=\frac{583 \times 10^{3}}{t^{3}} \\ & \mathrm{t}^{3}=1458 \quad \therefore \mathrm{t}=11.34 \mathrm{~mm}=12 \mathrm{~mm} \\ & \mathbf{b}=9 \mathbf{t}=\mathbf{1 0 8 m m} \end{aligned}$ 2) Initial Gap: $\begin{aligned} & \mathrm{C}=\frac{2 W \mathrm{~L}^{3}}{\mathrm{nEb} t^{3}}=\frac{2 \times 35 \times 10^{3} \times 450^{3}}{18 \times 0.2 \times 10^{6} \times 108 \times 12^{3}} \\ & \mathbf{C}=9.5 \mathrm{~mm} \end{aligned}$ 3) The load exerted on the band after the spring is assembled. $\begin{aligned} & \mathrm{W}_{\mathrm{b}}=\frac{2 \mathrm{nf} \times \mathrm{ng} \times W}{\mathrm{n}(2 \mathrm{ng}+3 \mathrm{nf})}=\frac{2 \times 3 \times 15 \times 35 \times 10^{3}}{18(2 \times 15+3 \times 3)} \\ & \mathbf{W}_{\mathrm{b}}=\mathbf{4 4 8 7 N} \end{aligned}$	11
Q. 6	b)	Describe in detail the design procedure used to design the piston rings and piston skirts.	8

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Width of other ring lands,
\[
b_{2}=0.75 t_{2} \text { to } t_{2}
\] \\
The gap between the free ends of the ring is given by \(3.5 t_{1}\) to \(4 t_{1}\). \\
Design of Skirt Length: \\
\(R=\) Normal side thrust acting on piston skirts \\
Maximum gas load \(\mathrm{F}=\mathrm{P}_{\max } \times \frac{\pi}{4} \mathrm{D}^{2}\) \\
\(R=\) Normal side thrust acting on piston skirts \\
\(\because\) Side thrust \(=10 \%\)
\[
\therefore \quad \mathrm{R}=0.1 \mathrm{~F}
\] \\
Let,
\[
l_{1}=\text { length of piston skirt }
\] \\
The piston skirt act as a bearing inside the liner \\
We have, \(\mathrm{R}=l_{1} \times \mathrm{D} \times \mathrm{P}_{\mathrm{b}}\) \\
Where \(P_{b}=\) allowable bearing pressure on the piston skirt
\end{tabular} \& 1

1
1
1

\hline Q. 6 \& c) \& | Describe in detail the design procedure used to design: |
| :--- |
| i) Thickness of cylinder head. |
| ii) Cylinder head bolts or studs. | \& 8

\hline \& \& i) Design Procedure to design Thickness of Cylinder Head: \&

\hline
\end{tabular}

	The cylinder head is designed by considering it a flat circular plate. The thickness is determined by following relation. $\begin{aligned} & \mathrm{t}=\mathrm{D} \sqrt{\frac{\mathrm{C}-\mathrm{P}_{\max }}{\sigma_{\mathrm{c}}}} \\ & \mathrm{t}=\text { thickness of cylinder head } \\ & \mathrm{D}=\text { diameter of cylinder } \\ & \mathrm{C}=\text { constant } \\ & =0.1 \ldots \ldots \ldots . \text { for C.I. } \\ & \mathrm{P}_{\max }=\text { maximum gas pressure inside the cylinder } \\ & \sigma_{\mathrm{c}}=\text { Allowable circumferential stress in } \mathrm{MPa} \text { or } \mathrm{N} / \mathrm{mm}^{2} \text {. It may be taken as } 30 \text { to } 50 \mathrm{MPa} \end{aligned}$ The studs or bolts are screwed up tightly along with a metal gasket or asbestos packing to provide a leak proof joint between the cylinder and cylinder head. The tightness of the joint also depends upon the pitch of the bolts or studs which should lie between $19 \sqrt{d}$ to $28.5 \sqrt{d}$ the pitch circle diameter $\left(\mathrm{D}_{\mathrm{p}}\right)$ is usually taken as $\mathrm{D}+3 \mathrm{~d}$. ii) Design Procedure to design Cylinder Head bolts or studs: a) The centre of stud is assumed at a distance of 1.25 to 1.5 d from inner wall of the cylinder where ' d ' is diameter of bolt (let us assume 1.5 d) $\begin{aligned} & D_{p}=D+2 \times 1.5 \mathrm{~d} \\ & =\mathrm{D}+3 \mathrm{~d} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \text { (i) } \end{aligned}$	4

