WINTER - 17 EXAMINATIONS

Subject Code: 17553 / N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { NO. } \end{aligned}$	MODEL ANSWER	$\begin{aligned} & \hline \text { MARK } \\ & \text { S } \end{aligned}$	TOTAL MARK S
1	Attempt any FIVE of the following:		5X4=20
a	Factor of Safety It is defined, in general, as the ratio of the maximum stress to the working stress. Mathematically, Factor of safety $=$ Maximum stress $/$ Working or design stress In case of ductile materials e.g. mild steel, where the yield point is clearly defined, the factor of safety is based upon the yield point stress. In such cases, Factor of safety $=$ Yield point stress $/$ Working or design stress Factors affecting selection of FOS:- 1.The reliability of the properties of the material and change of these properties during service; 2. The reliability of test results and accuracy of application of these results to actual machine parts; 3. The reliability of applied load ; 4. The certainty as to exact mode of failure ; 5. The extent of simplifying assumptions; 6. The extent of localised stresses; 7. The extent of initial stresses set up during manufacture; 8. The extent of loss of life if failure occurs; and 9. The extent of loss of property if failure occurs.	2 marks 2 marks. Any 2	4M
b	FG 300- It is a greay cast iron having a minimum tensile strenghth of $300 \mathrm{~N} / \mathrm{mm}^{2}$ 40C4:- It is a plain carbon steel having 0.4% carbon \& 0.4% tungsten.	$\begin{gathered} \hline 02 \\ \text { mark } \\ \text { each } \end{gathered}$	$\begin{gathered} 04 \\ \text { marks } \end{gathered}$

c	We know for a square key $\omega=t=\frac{d}{4}$ shear strength of key $\begin{equation*} T=l \times \omega \times \tau \times \frac{d}{2} \tag{1} \end{equation*}$ coushing strength of key $\begin{equation*} T=d \times \frac{t}{2} \times b_{c k} \times \frac{d}{2} \cdots \tag{2} \end{equation*}$ If the key is equally stong in shearing of cueshing $\begin{gathered} \text { ers }^{4}(1)=e_{4}^{\prime}(2) \\ \therefore \quad t \times \omega \times \tau \times \frac{d}{2}=d \times \frac{t}{2} \times b c k \times \frac{d}{2} \\ \omega \times \tau=\frac{t}{2} \times b c k \\ \frac{d}{4} \times \tau=\frac{d 14}{2}: b c k \\ \frac{d}{4} \times \tau=\frac{d}{8} \cdot b c k \\ \therefore b c k=2 \tau \end{gathered}$		4m
d	Advantages:- 1. The welded structures are usually lighter than riveted structures. This is due to the reason that in welding, gussets or other connecting components are not used. 2. The welded joints provide maximum efficiency (may be 100\%) which is not possible in case of riveted joints. 3. Alterations and additions can be easily made in the existing structures 4. As the welded structure is smooth in appearance, therefore it looks pleasing. 5. In welded connections, the tension members are not weakened as in the case of riveted joints. 6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself. 7. Sometimes, the members are of such a shape (i.e. circular steel pipe) that they afford difficulty for riveting. But they can be easily welded. 8. The welding provides very rigid joints. This is in line with the modern trend of providing rigid frames. 9. It is possible to weld any part of a structure at any point. But riveting	$\begin{gathered} 2 \mathrm{~m} \\ \text { Any } 2 \end{gathered}$	4m

	requires enough clearance. 10 . The process of welding takes less time than the riveting Disadvantages:- 1.Since there is an uneven heating and cooling during fabrication, therefore the member may get distorted or additional stresses may develop. 2. It requires a highly skilled labour and supervision. 3. Since no provision is kept for expansion and contraction in the frame, therefore there is a possibility of cracks developing in it. 4. The inspection of welding work is more difficult than riveting work.	$\begin{gathered} \text { 2M } \\ \text { ANY } 2 \end{gathered}$	
e	Following are the types of riveted heads:- 1) Snap Head 2) Pan Head 3) Pan Head with Taperd Neck 4) Round Countersunk head 5) Counter Head (A) SNAP HEAD (B) PAN (C) PAN HEAD WITH TAPERED NECK (E) COUNTER HEAD RIVET HEADS	02 m Any 4 2m Any 2 diag	4m
f	Bolts of Uniform strength:- If the shank of the bolt is turned down to a diameter equal or even slightly less than the core diameter of the thread (D) as shown in Fig. (b), then shank of the bolt will undergo higher stress. This means that a	2 m	4m

| | shank will absorb a large portion of the energy, thus relieving the
 material at the sections near the thread. The bolt, in this way, becomes
 stronger and lighter and it increase shock absorbing capacity of the bolt
 because be increased by increasing its length.of an increased modulus of
 resilience. This gives us bolts of uniform strength. The resilience of a
 bolt may also | |
| :--- | :--- | :--- | :--- |

b)	d : diameter of shaft $y=$ diameter of hub $=2 d$ $d_{1}=$ Nominal dia of $-601 t$ $D_{1}=$ diameter of bolt circle $=3 d$ $n=n_{0}$ of bolte t_{f} : thiconeor of Hange $=0.5 \mathrm{~d}$ $T_{s}, \tau_{b}, 4 \tau_{k}$. Allowable shear stresses for shaft, dolt f key. $\tau_{c}=$ Allowable Shear stress for Hange material $b_{c k f} f_{c b}$ = Allowable coneshing stress for bolt f leey. 1) Design of hub $T=\frac{\pi}{16} T_{c} \lambda^{3}\left(1-k^{4}\right) \cdots \text { (1) }$ where $k=\frac{\partial}{d}$. here $\partial=2 d \quad \& L=1.5 d$. from equadon (1) the diameter of hus can be checked If $T c<$ Thiven design is safe 2) Jesign of key $\begin{aligned} & \omega=\frac{d}{4} \\ & t=\frac{d}{6} \\ & l=L=1.5 d \end{aligned}$ 3) Design for flange $T=\pi \times D \times t_{f} \times \tau_{c} \times \frac{D}{2}$ here $t_{f}=0.5 \mathrm{~d}$. In above-equapon if $t_{c}<T_{\text {given }}$ design safe	Design of hub 2 m Design of key 2m Design of flange 2 m Design of bolts 2 m	08M

4) Design of bolter
load on each bolt $=\frac{\pi}{4} \times\left(d_{1}\right)^{2} \times \tau_{b}$
\therefore Total load on bolts: $n \times \frac{\pi}{4}\left(d_{1}\right)^{2} \times \tau_{b}$
\therefore Torque fan omitted

$$
T=n \times \frac{\pi}{4}\left(d_{1}\right)^{2} \times T_{b}
$$

from above equator d, can be calculated.
checking of bolt under crushing.

$$
T=n \times d_{i} \times t_{f} \times \delta_{c b} \times \frac{\partial_{i}}{2}
$$

If $\mathrm{l}_{\text {cb }}<$ baggiven design is sate

3.	Attempt any TWO of the following:		2X8=16
	1) Thictonever of Boiler shell: It can be determined by using thin cylindrical Formula $t=\frac{P \cdot D}{26 t \times n_{l}}+1 \mathrm{~mm}$ 2) Diameter of Rivet If $t>8 \mathrm{~mm}$ then $d=6 \sqrt{t}$ But If $t<8 \mathrm{~mm}$ then th diameter of rivet can be found by exceating shearing resistance with Coushing resistance $P_{S}=P_{c}$ -) Pitch of Rivet: $P_{\max }=C \cdot t+41.28 \mathrm{~mm}$ where $C=$ constant taten from standard table Also pitd can be found by equating $P_{t}=P_{s}$ of the least amongut the value is taken. 4) Back Pitch $\left(p_{b}\right)$: $p_{b}=0.33 p+0.67 d$ 5) Margin (m): $m=1.5 \mathrm{~d}$ 6) Strap Thictnear $\left(t_{1}\right)$: $t_{1}=0.625 t$	$2 m$ thickne s dia of rivet 2 m for pitch or rivet 1m back pitch 1 m for margin Strap thickne ss is extra data.	08m

b	3b/ Given $\begin{aligned} & d_{1}=50 \mathrm{~mm}, \quad d_{2}=375 \mathrm{~mm}, \quad w=12 \times 10^{3} \mathrm{~N} \\ & d=400 \mathrm{~mm} \quad n=4, \quad \sigma_{t}=84 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Direct shear load $W_{S}=\frac{W}{n}=\frac{12 \times 10^{3}}{4}=3000 \mathrm{~N}$ The maximum tensile load $\begin{aligned} W_{t} & =\frac{W \cdot d \cdot d_{2}}{2\left[d_{1}{ }^{2}+d_{2}{ }^{2}\right]}=\frac{12 \times 10^{3} \times 400 \times 375}{2\left[50^{2}+375^{2}\right]} \\ & =\frac{360 \times 10^{6}}{286.25 \times 10^{3}}=1.25 \times 10^{3} \mathrm{~N} \\ \underline{\underline{W_{t}}} & =1.25 \times 10^{3} \mathrm{~N} \end{aligned}$ Equivalant load $\begin{aligned} W_{t e} & =\frac{1}{2}\left[w_{t}+\sqrt{\left(w_{t}\right)^{2}+4\left(w_{s}\right)^{2}}\right. \\ & =\frac{1}{2}\left[1.25 \times 10^{3}+\sqrt{\left(1.25 \times 10^{3}\right)^{2}+4(3000)^{2}}\right. \\ \underline{W_{t e}} & =3.68 \times 10^{3} \end{aligned}$ Size of bolt we know $\begin{aligned} 6 t & =\frac{w_{t e}}{\frac{\pi}{4}(d c)^{2}} \\ \therefore 84 & =\frac{3.68 \times 10^{0}}{\frac{\pi}{4}\left(d_{c}\right)^{2}} \\ d_{c}^{2} 84 & =4.68 \times 10^{3} \\ \therefore d_{c} & =6.61 \mathrm{~mm} \\ & d_{c} \end{aligned}=8 \mathrm{~mm} .$ We will use bolt of size m / o.		8m

\begin{tabular}{|c|c|c|c|}
\hline 4. \& Attempt any TWO of the following: \& \& 2X8=16 \\
\hline a i) \& \begin{tabular}{l}
Creep Curve:- Fig shows an idealized creep curve. \\
When load is appilied at the beginning of creep test, Instanteneous deformation occurs. \\
This deformation followed by Creep curve. It occurs in three stages. \\
1) First stage:- it is called primary creep during which creep rate decreases. \\
2) Second stage:- It is called secondary creep during which creep rate remains constant.This stage occupies major portion of curve. \\
3) Third Stage:- it is called tertiary creep during which creep rate increases \& neck formation will takes place finlly reslutls in fracture.
\end{tabular} \& \begin{tabular}{l}
2 m \\
2m \\
diag
\end{tabular} \& 4 m \\
\hline a ii) \& \begin{tabular}{l}
Endurance Limit:- \\
Endurance or fatigue limit is defined as the maximum value of completely reversed bending stress, which a standard specimen can withstand without failure for infinite number of cycles of loads. \\
S-N curve:- \\
Consider a standard mirror polished specimen rotating in a fatigue testing machine \& loaded in a bending.
\end{tabular} \& \(2 m\)

$2 m$ \& 4m

\hline
\end{tabular}

	The specimen is subjected to completely reversed stresses. A record is kept of number of cycles required to produce a failure \& results are plotted on Stress-cycle graph as shown in fig.		
b	Given $\begin{aligned} & M=3000 \mathrm{~N} \cdot \mathrm{~m}=3 \times 106 \mathrm{~N} \cdot \mathrm{~mm} \\ & T=1000 \mathrm{~N} \cdot \mathrm{~m}=1 \times 106 \mathrm{~N} \cdot \mathrm{~mm} \\ & \sigma_{t_{u}}=6 \text { bu }=700 \mathrm{~N} / \mathrm{mm}^{2} \\ & T_{\text {Ul }}=500 \mathrm{~N} / \mathrm{mm}^{2}, F O \mathrm{~s}=6 . \end{aligned}$ 1) To Find $6 b+I$ $\begin{aligned} \therefore \sigma_{b} & =\frac{\sigma_{b u}}{F_{0} s}=\frac{700}{\sigma}=116.67 \mathrm{~N} / \mathrm{mm}^{2} \\ \tau_{1} & =\frac{T_{u}}{F_{\sigma}}=\frac{500}{\sigma}=83.33 \mathrm{Nmm}^{2} \end{aligned}$ 2) Accordding to Max shear stress Theory Equivalant Twisting Momeut $\begin{aligned} & T_{e}=\sqrt{m^{2}+T^{2}}=\sqrt{(1 \times 106)^{2}+(3 \times 106)^{2}} \\ & T_{e}=3.16 \times 10^{6} \mathrm{~N} \cdot \mathrm{~mm} \end{aligned}$ Equating with $\begin{gathered} T_{e}=\frac{\pi}{16} \tau d^{3}=\frac{\pi}{16} \times 83.33 d^{3} \\ \therefore 3.16 \times 106=16.36 d^{3} \\ d=57.80 \mathrm{~mm} \approx 58 \mathrm{~mm} \approx 60 \mathrm{~mm} \end{gathered}$ 3) Accordding to Maximum Normal Stheos theory $\begin{aligned} & M_{e}=\frac{1}{2}\left[M+\sqrt{M^{2}+T^{2}}\right]=\frac{1}{2}\left[3 \times 10^{6}+3.16 \times 106\right] \\ & M_{e}=3.08 \times 106 \mathrm{~N} . \mathrm{mm} \end{aligned}$ Equating with $\begin{gathered} M_{e}=\frac{\pi}{3^{2}} \times 66 \times d^{3}=\frac{\pi}{32} \times 116.67 \times d^{3} \\ \therefore 3.08106=11.45 \mathrm{~d}^{3} \\ d=64.54 \mathrm{~mm} \approx 65 \mathrm{~mm} \end{gathered}$ \therefore Selecting the larger value $d=65 \mathrm{~mm}$	given1m first step 1 m Second step 3m Third step 3m	8m

c	4. Drawing FBD of an entive truso To Find Support Reactions $\begin{aligned} & \text { SM } F_{A}=0 \\ & +(100 \times 4)-(80 \times 4)-\left(R_{D} \times 12\right)=0 \\ & 400-320=12 R_{D} \\ & R_{D}=6.67 \mathrm{kN} \\ & \varepsilon C_{Y}=0 \\ & R_{A V}-100+R_{D}=0 \\ & R_{A V}=0.33 .3 \mathrm{kN} \end{aligned}$ Taking $\varepsilon f_{x}=0$ $R_{A H}-80=0$ $R_{A 1 t}=80 \mathrm{kN}$ Let us consider the equlissimm of truer to the left of section $x-x$ Taking momeut about B. $\begin{gathered} \left(F_{f E} \times 4\right)+(80 \times 4)=93.33 \times 4 \\ F_{f E}=13.33 \mathrm{kN} T \end{gathered}$ Taking momeuts about $E$$\begin{gathered} (\sqrt{B} C \times 4)+(100 \times 4)=93.33 \times 3 \\ \sqrt{B C}=-86.66 c \end{gathered}$SoNo Member naf Nature 1 $F E$ 13.33 T 2 $B C$ 86.66 C 3 $B E$ 0.43 $C$$\begin{aligned} & \Sigma f_{C}=0 \\ & 80-F_{B C}+F_{E A}-F_{B E} \cos 45=0 \\ & \quad F_{B E}=-9.43 \mathrm{kN} c \end{aligned}$	02 m to find support reaction 2 m for each membe r	8m

5.	Attempt any TWO of the following:		$\begin{gathered} 2 \times 8=1 \\ 6 \end{gathered}$
a	$\left\{\begin{array}{l}\frac{5 a}{=} \\ \frac{\text { Given }}{P=40} \mathrm{lw}=40 \times 10^{3} \mathrm{\omega}, \quad \mathrm{~N}=350 \mathrm{rpm} \\ \tau_{\text {shaft }}=40 \mathrm{~N} / \mathrm{mm}^{2}, \quad \tau_{\text {key }}=40 \mathrm{~N} / \mathrm{mm}^{2}, \quad \tau_{\text {mutt }}=15 \mathrm{~N} / \mathrm{mm}^{2} \\ \sigma_{\text {ckpey }}=80 \mathrm{~N} / \mathrm{mm}^{2}\end{array}\right.$ Given $\begin{aligned} & P=40 \text { kw }=40 \times 10^{3} \mathrm{\omega}, \quad \mathrm{~N}=350 \mathrm{rpm} \\ & \tau_{\text {shaft }}=40 \mathrm{~N} / \mathrm{mm}^{2}, \quad \tau_{\text {key }}=40 \mathrm{~N} / \mathrm{mm}^{2}, \quad \tau_{\text {matt }}=15 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\text {ck bey }}=80 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ 1) To Find Torque $\begin{aligned} & P=\frac{2 \pi N T}{60} \therefore T=\frac{60 P}{2 \pi N} \quad \therefore T=\frac{60 \times 40 \times 10^{3}}{2 \times \pi \times 300} \\ & \therefore T=1.09 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m} \quad T=1.09 \times 10^{6} \mathrm{~N} . \mathrm{mm} \end{aligned}$ 2) Diameter of shaft $\begin{aligned} & T=\frac{\pi}{16} T d^{3} \Rightarrow \therefore 1.09 \times 106=\frac{\pi}{16} \times 40 \times d^{3} \\ & \therefore d=51.77 \mathrm{~mm} \approx 55 \mathrm{~mm} \text { OR dこ52mm} \end{aligned}$ 3) Design of Muff/Sleeve:- By using emperical relations outer dia of muff $D=2 d+13=123 \mathrm{~mm}$ OR 117 mm ten gth of Muft $t=3.5 d=192.5=194 . \mathrm{mm}$ or 182 mm checking of sleeve under shearing $\begin{aligned} & T=\frac{\pi}{16} \tau J^{3}\left(1-k^{4}\right) \\ & 1.09 \times 106=\frac{\pi}{16} \tau(123)^{3} \cdot\left(1-0.44^{4}\right) \\ & 1.09 \times 10^{6}=351.68 \times 10^{3} \tau \\ & \therefore \tau=3.10 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ here $\tau<$ Tgiven le $15 \mathrm{~N} / \mathrm{mm}^{2}$ design is safe 4) Design of key By using Emperical Relations $\begin{array}{ll} w=\frac{d}{4}=\frac{5 s}{4}=14 \mathrm{~mm} \quad l=\frac{L}{2}=97 \mathrm{~mm} \\ t=\frac{d}{6}=\frac{55}{6}=10 \mathrm{~mm} \end{array}$	First step 1m Second step 1m Third step 3m Fourth step 3m	8m

	5\% Shearing of key checking $\begin{aligned} T= & l \times \omega \times \tau \times \frac{d}{2} \\ 1.0 g \times 10^{6} & =97 \times 14 \times \tau \times \frac{55}{2} \\ \tau & =29.18 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ here $\tau<\tau_{\text {givence }} 40 \mathrm{~N} / \mathrm{mm}^{2}$ design Sate checking of key under oneshing $\begin{gathered} T=l \times \frac{t}{2} \times 6 c \mathrm{k} \times \frac{d}{2} \\ 1.09 \times 10^{6}=97 \times \frac{10}{2} \times 6 c \mathrm{ck} \times \frac{55}{2} \\ b_{c k}=79.47 \mathrm{~N} / \mathrm{mm}^{2} \end{gathered}$ here bck < bckpiven le $80 \mathrm{~N} / \mathrm{mm}^{2}$ Desyus safe		
b	Let $\mathrm{l}_{\mathrm{a}}=$ Length of weld at the top, $\mathrm{l}_{\mathrm{b}}=$ Length of weld at the bottom, $1=$ Total length of weld $=\mathbf{l} \mathbf{a}+l_{b}$ $\mathrm{P}=$ Axial load, $a=$ Distance of top weld from gravity axis, $\mathrm{b}=$ Distance of bottom weld from gravity axis, and $\mathrm{f}=$ Resistance offered by the weld per unit length Moment of the top weld about gravity axis $=1_{\mathrm{a}} \times \mathrm{fxa}$ and moment of the bottom weld about gravity axis $=l_{b} \times \mathrm{fxb}$ Since the sum of the moments of the weld about the gravity axis must be zero, therefore,	Fig 2m Derivat ion 6 m	8M

	$\begin{equation*} 1_{\mathrm{a}} \times \mathrm{f} \times \mathrm{a}=\mathrm{l}_{\mathrm{b}} \times \mathrm{f} \times \mathrm{b} \tag{i} \end{equation*}$ or $\mathrm{l}_{\mathrm{a}} \mathrm{Xa}=\mathrm{I}_{\mathrm{b}} \mathrm{xb}$. We know that $\begin{equation*} l=l_{a}+l_{b} \tag{ii} \end{equation*}$ From equations (i) and (ii), we have $1_{\mathrm{a}}=\frac{l x b}{(a+b)}$ \& $\mathrm{l}_{\mathrm{b}}=\frac{l \times a}{(a+b)}$		
C	${ }_{5} \mathrm{c}$. Isolating Joint A $\begin{aligned} & \text { Taking } E F_{y}=0 \\ & -1-\Gamma_{B A} \sin 4 S=0 \\ & -1=T_{A B} \sin \angle S \\ & F_{A B}=-1 \cdot 41 \mathrm{kN} C \\ & \text { Taking } \varepsilon \int_{x}=0 \\ & -F_{A C}-\int_{A B} \cos 4 s=0 \\ & F_{A C}=1 K_{N} T \end{aligned}$	02 Marks for all FBD of isolated joints 1m each for each membe r with nature.	8M

\begin{tabular}{|c|c|c|c|}
\hline 6. \& Attempt any FOUR of the following: \& \& 4X4=16 \\
\hline a \& \begin{tabular}{l}
\(\cdot\) Keyway is a slot machined either on the shaft or in the hub to accommodate the key. \\
- It is cut by vertical or horizontal milling cutter. \\
- The keyway cut into the shaft reduces the load carrying capacity of shaft. \\
- This is due to stress concentration near the comers of the keyway and reduction in the crosssectionalarea of shaft. \\
- In other words, the torsional strength of shaft is reduced. \\
- The following relation of reduction factor is used to analyze the weakening effect of keyway is given by H. F. Moore.
\[
\mathrm{e}=1-0.2(\mathrm{w} / \mathrm{d})-1.1(\mathrm{~h} / \mathrm{d})
\] \\
Where, \(\mathrm{e}=\) shaft strength factor \(=\) Strength of shaft with keyway/Strength \\
Of shaft WIithout keyway \\
\(\mathrm{w}=\) Width of keyway, \(\mathrm{d}=\) Diameter of shaft \\
\(\mathrm{h}=\) Depth of keyway \(=112 \mathrm{x}\) thickness of key \(=1 / 2 \mathrm{xt}\) \\
- It is usually assumed that strength of keyed shaft is \(75 \%\) of solid shaft. \\
- Thus, after finding out dimensions of key, the reduction factor 'e' is Calculated and for safe design, its value should be less than 0.75 .
\end{tabular} \& 4 m \& 4m \\
\hline b \& \begin{tabular}{l}
1) Single Tranoverve Fillet weld \\
\(s=\) throat thiskness \\
Tensile strength of simple tranoverse fllet werd.
\[
\underline{\underline{W_{6 t}}}=0.707 \times s \times l \times 6 t
\] \\
2) Double Parallel Fillet weld \\
shear strength of Douske Parallel fillet wel d
\[
\omega_{\tau}=2 \times 0.707 \times 8 \times d \times \tau
\]
\end{tabular} \& \(2 m\)

$2 m$ \& 4m

\hline
\end{tabular}

	initial tension in a bolt, based on experiments, may be found by the relation $\mathrm{Pi}=2840 \mathrm{dN}$ $\mathrm{Pi}=$ Initial tension in a bolt, and $\mathrm{d}=$ Nominal diameter of bolt, in mm. 2.Torsional shear stress caused by the frictional resistance of the threads during its tightening The torsional shear stress caused by frictional resistance of the threads during its tightening may be obtained by using the torsion equation. We know that $\mathrm{T} / \mathrm{J}=\mathrm{T}_{\mathrm{s}} / \mathrm{r}$ $\mathrm{T}_{\mathrm{s}}=\mathrm{T} / \mathrm{J} \times \mathrm{r}=\left\{\mathrm{T} /(\pi / 32) \times \mathrm{d}_{\mathrm{c}}{ }^{4}\right\} \times\left\{\mathrm{d}_{\mathrm{c}} / 2\right\}=16 \mathrm{~T} / \pi\left(\mathrm{d}_{\mathrm{c}}\right)^{3}$ Where $\mathrm{T}_{\mathrm{s}}=$ Torsional shear stress, $\mathrm{T}=$ Torque applied, and $\mathrm{d}_{\mathrm{c}}=$ Minor or core diameter of thread 3.Shear stress across the threads. The average thread shearing stress for the screw $\left(T_{s}\right)$ is obtained by using the relation: $\mathrm{T}_{\mathrm{s}}=\mathrm{p} /\left(\pi \mathrm{d}_{\mathrm{c}} \times \mathrm{b} \times \mathrm{n}\right)$ Where $\mathrm{b}=$ Width of the thread section at the root. The average thread shearing stress for the nut is $\mathrm{T}_{\mathrm{n}}=\mathrm{p} /(\pi \mathrm{d} \times \mathrm{b} \times \mathrm{n})$ Where $\mathrm{d}=$ Major diameter. 4. Compression or crushing Stress on threads. The compression or crushing stress between the threads $\left(\sigma_{c}\right)$ may be obtained by using the relation : $\sigma_{\mathrm{c}}=\mathrm{p} / \pi\left[\mathrm{d}^{2}-\left(\mathrm{d}_{\mathrm{c}}\right)^{2}\right] \mathrm{n}$ Where $\mathrm{d}=$ Major diameter, $\mathrm{d}_{\mathrm{c}}=\text { Minor diameter, and }$ $\mathrm{n}=$ Number of threads in engagement. 5. Bending stress if the surfaces under the head or nut are not perfectly parallel to the bolt axis. When the outside surfaces of the parts to be connected are not parallel to each other, then the bolt will be subjected to bending action. The bending stress $\left(\sigma_{b}\right)$ induced in the shank of the bolt is given by $\sigma_{b}=x . E / 21$ where where $\mathrm{x}=$ Difference in height between the extreme corners of the nut or head, I = Length of the shank of the bolt, and $\mathrm{E}=$ Young's modulus for the material of the bolt.		
e	Stresses in Pipes: The stresses in pipes due to the internal fluid pressure are determined by Lame's equation. According to Lame's equation, tangential stress at any radius x бt $=\left\{\left[\mathrm{p}(\mathrm{ri})^{2}\right] /\left[(\mathrm{ro})^{2}-(\mathrm{ri})^{2}\right]\right\} /\left\{1+\left[(\mathrm{ro})^{2} / \mathrm{x}^{2}\right]\right\}$ And Radial stress at any radius x	4 m	4m

	бr $=\left\{\left[\mathrm{p}(\mathrm{ri})^{2}\right] /\left[(\mathrm{ro})^{2}-(\mathrm{ri})^{2}\right]\right\} /\left\{1-\left[(\mathrm{ro})^{2} / \mathrm{x}^{2}\right]\right\}$ where $\mathrm{p}=$ Internal fluid pressure in the pipe, $\mathrm{ri}=$ Inner radius of the pipe, and ro = Outer radius of the pipe		
f	Assumptions in the analysis of truss:-		
1)The frame is a perfect one ie the relation $\mathrm{n}=2 \mathrm{j}-3$ must be satisfied.	4 m 2) All the members are hinged or pin jointed at the ends. each 3) The loads are acting only at the joints.	$\mathbf{4 m}$	
	4) The self weight of the member is neglected.	point	

