

WINTER - 17 EXAMINATIONS

Subject Code: 17553

Model Answer

Page No:

/ N

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

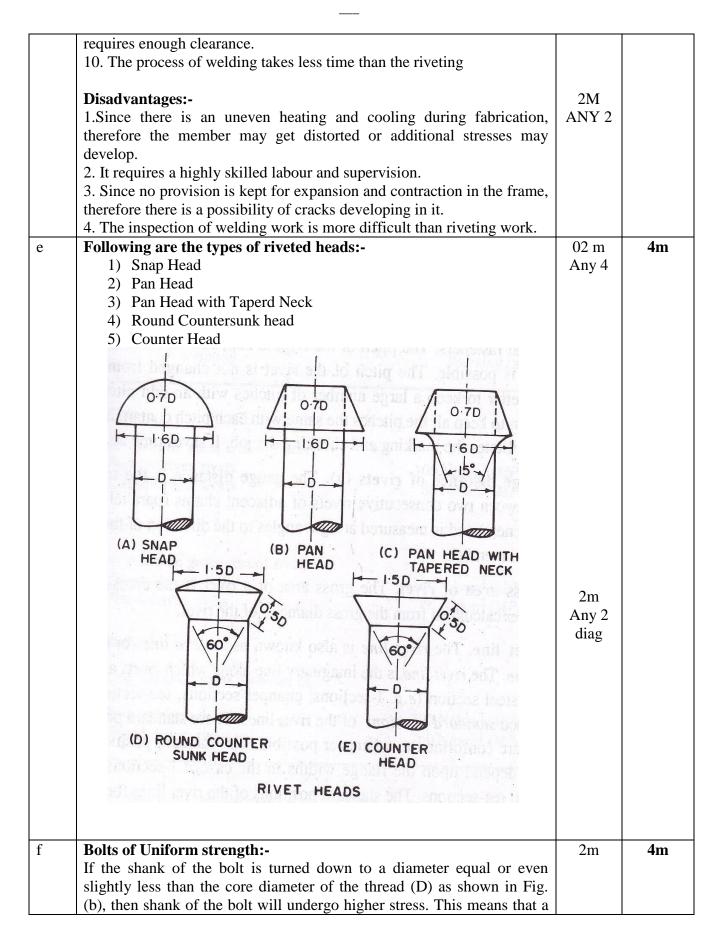
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

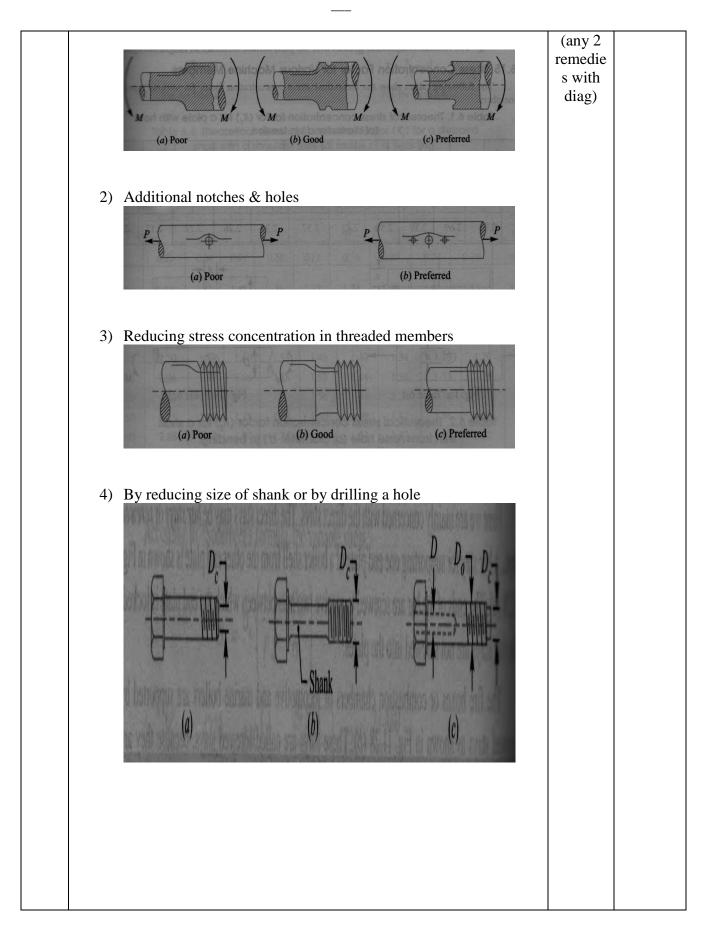
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.



Q. NO.	MODEL ANSWER	MARK S	TOTAL MARK S
1	Attempt any FIVE of the following:		5X4=20
a	 Factor of Safety It is defined, in general, as the ratio of the maximum stress to the working stress. Mathematically, Factor of safety = Maximum stress / Working or design stress In case of ductile materials e.g. mild steel, where the yield point is clearly defined, the factor of safety is based upon the yield point stress. In such cases, Factor of safety = Yield point stress / Working or design stress Factors affecting selection of FOS:- 1. The reliability of the properties of the material and change of these properties during service; 2. The reliability of test results and accuracy of application of these results to actual machine parts; 3. The reliability of applied load ; 4. The certainty as to exact mode of failure ; 5. The extent of simplifying assumptions; 6. The extent of localised stresses; 7. The extent of localised stresses set up during manufacture; 8. The extent of loss of life if failure occurs; and 9. The extent of loss of property if failure occurs.	2 marks 2 marks. Any 2	4M
b	 FG 300- It is a greay cast iron having a minimum tensile strenghth of 300 N/mm² 40C4:- It is a plain carbon steel having 0.4 % carbon & 0.4% tungsten. 	02 mark each	04 marks

		4m
12		4111
the second se		
We know for a square per.		
$w = t = \frac{d}{d}$		
Shear strength of key		
T= JXWX TX d O		
Crushing strengte of key		
T= dx. t=x berx d= - 0		
If the key is equally stong in shearing of		
crushing es" D = eq" @		
· dxwxzxd = dx ± x bikxd		
WXZ = t x bik		
$\frac{d}{d} \times T = \frac{d}{2}$: 6ck		
$\frac{d}{3}x^2 = \frac{d}{8} \cdot 6ck$		
6CK=27		
	2	
Advantages:- 1. The welded structures are usually lighter than riveted structures. This	2m Any 2	4 m
is due to the reason that in welding, gussets or other connecting	7 my 2	
components are not used.		
2. The welded joints provide maximum efficiency (may be 100%)		
which is not possible in case of riveted joints.		
3. Alterations and additions can be easily made in the existing structures4. As the welded structure is smooth in appearance, therefore it looks		
pleasing.		
5. In welded connections, the tension members are not weakened as in		
the case of riveted joints.		
6. A welded joint has a great strength. Often a welded joint has the		
6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself.		
6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself.7. Sometimes, the members are of such a shape (i.e. circular steel pipe)		
6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself.7. Sometimes, the members are of such a shape (i.e. circular steel pipe) that they afford difficulty for riveting. But they can be easily welded.		
6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself.7. Sometimes, the members are of such a shape (i.e. circular steel pipe)		



	shank will absorb a large portion of the energy, thus relieving the material at the sections near the thread. The bolt, in this way, becomes stronger and lighter and it increase shock absorbing capacity of the bolt because be increased by increasing its length.of an increased modulus of resilience. This gives us bolts of uniform strength . The resilience of a bolt may also	2m diag	
g	Perfect frame :A pin-jointed frame which has got just sufficient number of members toresist the loads without undergoing appreciable deformation in shape iscalled rigid or perfect frame.The perfect frame obeys the following condition viz. $n = 2 j - 3$ where, $n = no.$ of links and $j = no.$ of joints	4 marks	4m
2.	Attempt any TWO of the following:		8X2=16
2. a	Attempt any TWO of the following: Stress Concentartion:-	2m	8A2-10 8m
	 Whenever a machine component changes the shape of its cross-section, the simple stress distribution no longer holds good and the neighbourhood of the discontinuity is different. This irregularity in the stress distribution caused by abrupt changes of form is called stress concentration. It occurs for all kinds of stresses in the presence of fillets, notches, holes, keyways, splines, surface roughness etc. Causes:- It may occurs due to- Change in cross section such as stepped axle, grooves, keyways, threaded holes etc. Concentrated load applied at minimum areas of machine parts such as contact between gear teeth. Variation in mechanical properties of materials from point to point due to cavities, cracks etc. 	2m (any 2 causes)	
	Remedies:-		
	Remedies:-		

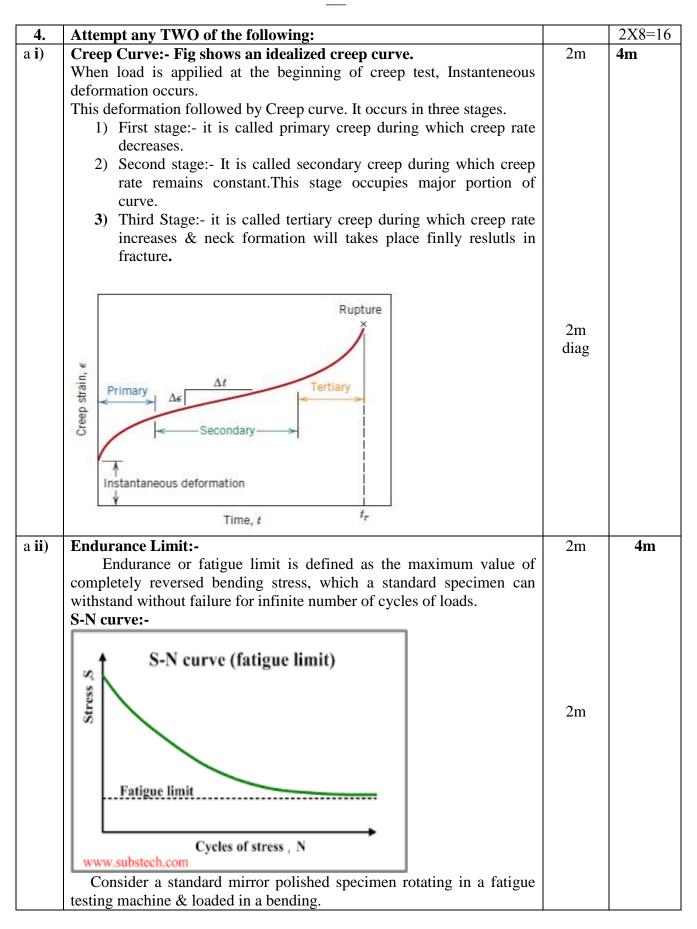
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

d : diameter of Shaft b) **08M** D = diameter of hub = 2d di = Nominal dia of bolt Die diameter of bolt circle = 3d n= no of boltu to: thicknews of flange = 0.5d Design Ts, To, 42k. Allowable Shear Strevuer for Shaft, Solt & bey. of hub To = Alloweble Shear Strever for Hange material 2m lick flick = Allowable crushing stream for bolt of leey. 1) Design of hub $T = \prod_{i \in I} T_{c} \mathfrak{I}^{3} (1 - K^{4}) \cdots \mathbb{O}$ Design where $k = \frac{\partial}{\partial t}$ here $\partial = 2d$ f = 1.5d. of key 2m From equation (1) the drameter of hub can be checked If Tel Thing design is safe Design 2) Jesign of key of flange W=d 2m t=d l=L=1.5d 3) Design for Hange Design of bolts T= T x Dx tf x Tc x D 2m here to = 0.5d In above equation if te < Types design safe

4) Devilu of Poltr load on each bolt = $\frac{\pi}{9} \times (d_1)^2 \times T_b$: Total load on bolto : MX II (d,)2 x Tb : Torque fransmitted $T = M \times \frac{T}{2} (d_1)^2 \times \overline{l}_b$ from above equation d, can be calculated. checking of solt under crushing. T= NXdixtfxdesx Ji It bes < besgiven design iv safe

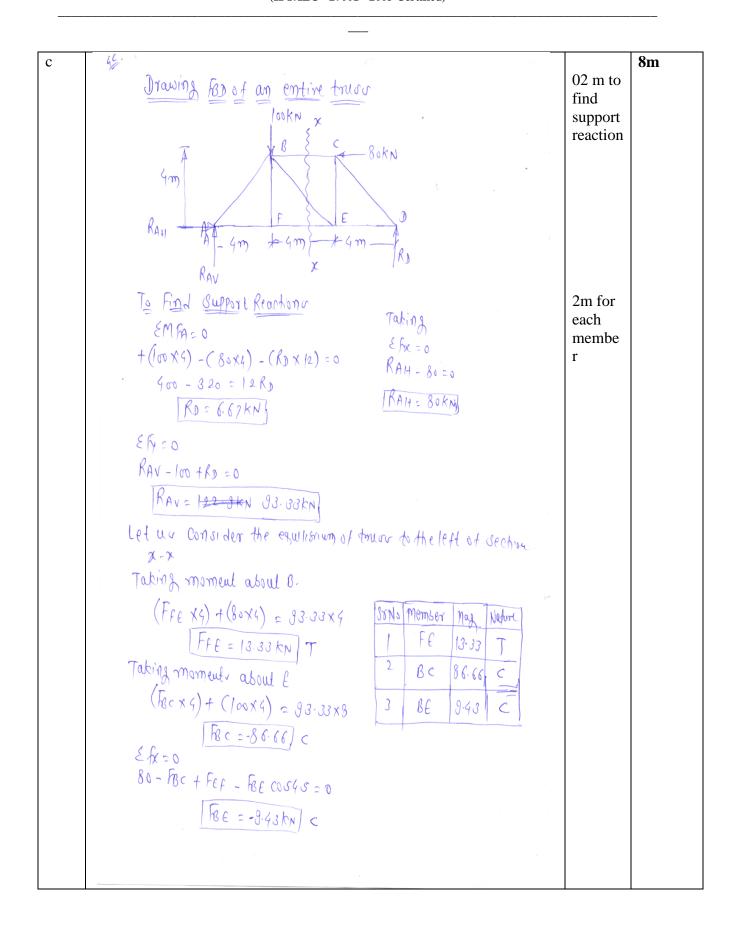
c)	Given W= 80 mm, S=t= 10 mm, 6t= 70 N/mm ²		08 marks
	$T = 50 \text{ N/mm}^2 \text{ W} = 60 \text{ KN} = 60 \times 10^3 \text{ N}.$		
	To Find the effective length of single transverse		
	fillet weld. ie. di		
	$\therefore \mathcal{A}_1 = \mathcal{W} - 12.5$ $= 80 - 12.5$	1m(L ₁)	
	= 80 - 12.5 1 = 67.5 mm		
	Tensile Strength of plate (WW):-		
	Wot = 0.707 x Sx dix 6t		
	$\frac{= 0.707 \times 10 \times 67.5 \times 70}{W_{61} = 33.40 \times 10^3 N}$		
		$2m(W_{ot})$	
	Shearing Strength of Plate (WZ):- WT = 2×0.707× S×U2× T		
	$= 2 \times 0.707 \times 10 \times 12 \times 50$		
	$W_2 = 707 d_2,$	2m(Wъ)	
	We know Total load Carried by Plate		
	$W = W_{6+} + W_{7}$		
	60×10 ³ = 33.40×10 ³ + 707 l =		
	: JL = 60×103 - 33.4,×103		
	707	2m(L ₂)	
	d2 = 37.62 mm;		
	For starting 4 stopping of weld run 12.5 mm is to be		
	added : $d_2 = 37.62 + 12.5$	1m	
	2 = 50.12 mm, lengte of Parallel fillet weld.		

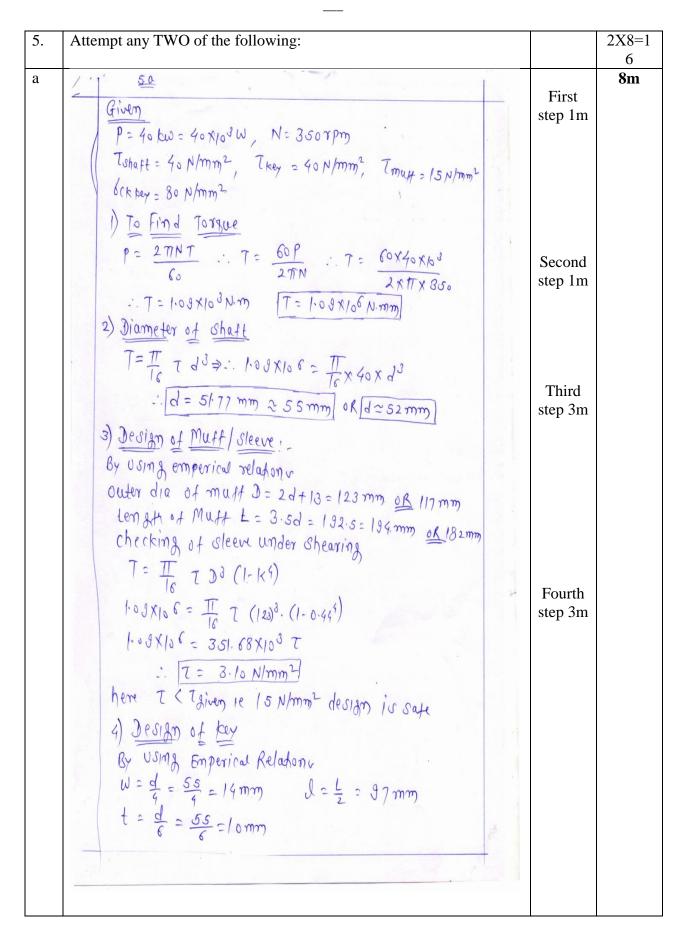
3. At	ttempt any TWO of the following:		2X8=1
) Thicknews of Boiler Shell: - It can be determined by Using thin Cylindrical Formula $t = \frac{P \cdot D}{2\delta t \times n_s} + 1 \text{ mm}$	2m thickne s	08m
	2) <u>Diameter of Rivet</u> If t > 8 mm then d = 6JT Bud If t<8 mm then the diameter of sivet Can be found by equating shearing resistance	2m for dia of rivet	
	3) <u>Pitch of Rivet</u> : Pmax = C.t.+ 41.28mm Where C = Constant taken from Standard take Also pitch Can be found by equating	2m for pitch or rivet	
	9) Back Pitch (Pb): Pb = 0.33 Pt 0.67 d.	1m back pitch	
	s) $\frac{Marsin}{m} = 1.5 d.$	1m for margin	
	6) Strap Thickness (t.): $t_1 = 0.625t$	Strap thickne ss is extra data.	


_

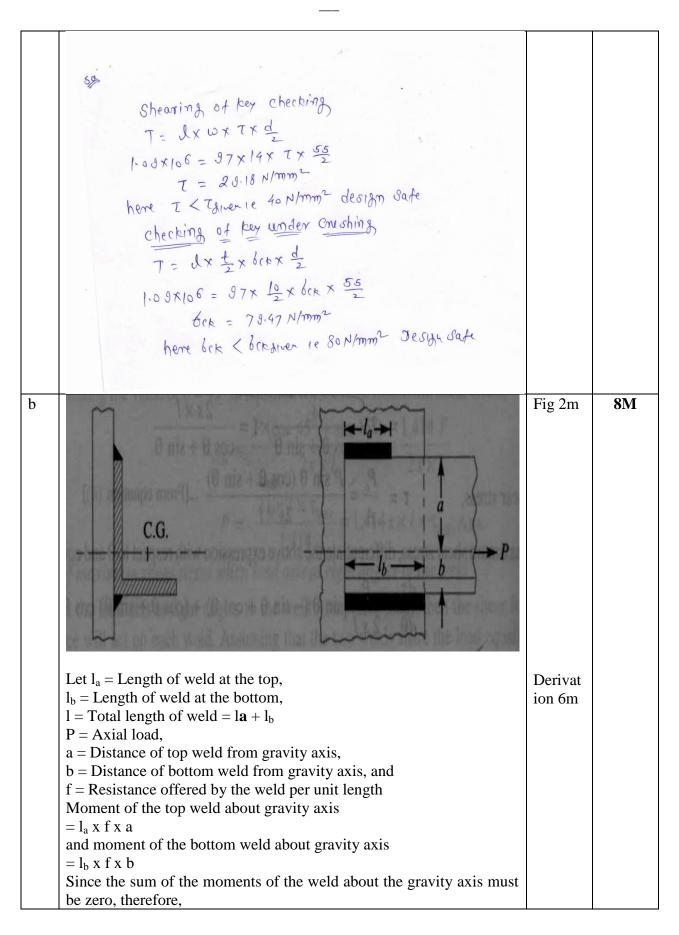
b	30		8m
	Given $d_1 = 50 \text{ mm}, d_2 = 375 \text{ mm}, W = 12 \times 10^3 \text{ N}$ $d = 400 \text{ mm}, M = 4, \delta t = 84 \text{ N/mm}^2$ Direct shear load	02 m for direct shear load	
	$\frac{W_{S}}{N} = \frac{W}{n} = \frac{12 \times 10^{3}}{4} = \frac{3000 \text{ N}}{4}$ The maximum tensile load $W_{t} = \frac{W \cdot d \cdot dz}{2 \left[d_{1}^{2} + dz^{2} \right]} = \frac{12 \times 10^{3} \times 400 \times 375}{2 \left[50^{2} + 375^{2} \right]}$	2 m for tensile load	
	$= \frac{360 \times 10^{6}}{286 \cdot 25 \times 10^{3}} = 1.25 \times 10^{3} \text{ N}$ $\underline{W_{1}} = 1-25 \times 10^{3} \text{ N}$ $\underline{Equivalant} = \frac{1}{2} \left[W_{1} + \sqrt{(W_{1})^{2} + 4(W_{3})^{2}} \right]$	2m equival ent load	
	$= \frac{1}{2} \left[1 \cdot 2.5 \times 10^{3} + \int (1 \cdot 2.5 \times 10^{3})^{2} + 4 (3000)^{2} \right]$ <u>Wte</u> = <u>3.68 × 10^{3}</u> <u>Size of bolt</u> we know <u>6.</u> Wte	2m for	
	$6t = \frac{Wte}{\frac{\pi}{4}(dc)^2}$ $\therefore 84 = \frac{3.68 \times 10^3}{\frac{\pi}{4}(dc)^2}$ $dc^2 84 = 4.68 \times 10^3 dc^2$ dc = 6.61 mm	size of bolt	
	We will use bolt of Size MIO.		

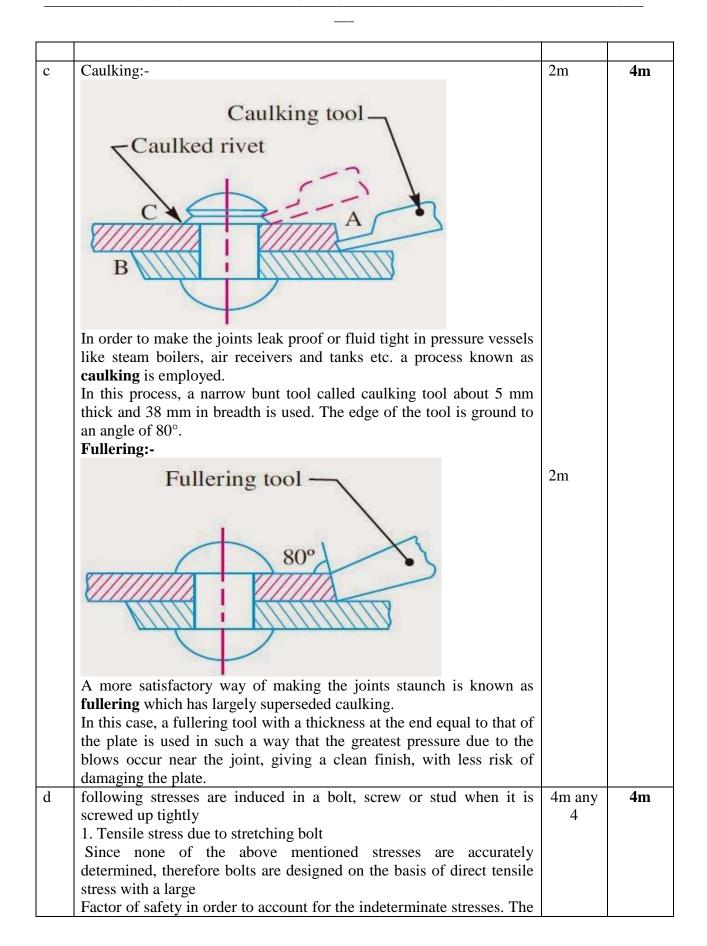
С 34 1m **8M** given Given)= somm, R= 25mm, P=7N/mm² /t= 20N/mm² 66= 60 N/mm2 To Find thickness of Pipe t 1m $t = R \left[\sqrt{\frac{6t + P}{6t - P}} - 1 \right] = 25 \left[\sqrt{\frac{20 + 7}{20 - 7}} + 1 \right]$ thickne [t= 11:03 ~ 12 mm] SS sutside dia of parting (D1) $1 \text{m} D_1$ DI= D+2x (width of Packing) = 50 + 2×10 - --- : assuming Packing widk=10mm $\mathcal{D}_1 = 70 \text{mm}$ Force Trying to Seperate the flampe 1m for $F = \frac{1}{4} (\mathcal{I}_{i})^{2} \times p = \frac{1}{4} (\mathcal{I}_{o})^{2} \times \mathcal{I}$ F F=26943N Since the flamae is secured by two bolts = Fo = E = 20034 = 18471.5 N. Let de = Core dia of bolto 1m for webnow F_b $F_{b} = \frac{T_{f}}{5} (d_{c})^{2} \times 6_{b}$ 13471.5 = TTx (dc)2x 60 dc = 16.9 2 17 mm $1 \text{m} d_0$ webnow dc = 0.84 do - do = 22mm] Outer diameter of Hange 1m D_o Jo =)+2++4.6d = 50 + 2 ×12 + 4, 6 ×22 Do= 175.2 mm ~ 180 mm Pitch circle diameter Jp = Jo - (3t + 20mm) $1 \text{m} D_{\text{p}}$ = 180 - (3×12+20) Dp = 129 mm





plotted on Stress-cycle graph as shown in fig.		
$\frac{\text{Given}}{M = 3000 \text{ N} \cdot \text{m} = 3 \text{ X} 0 \text{ GN} \cdot \text{mm}}$ $T = 1000 \text{ N} \cdot \text{m} = 1 \text{ X} 0 \text{ GN} \cdot \text{mm}$	given1m	8m
$\delta t_{u} = \delta b_{u} = 700 \text{ N/mm}^{2}$ $T_{u} = 500 \text{ N/mm}^{2}$, $FOS = 6$.) To Find $\delta b + T$ $\delta b = \frac{\delta b_{u}}{Fos} = \frac{700}{6} = 116.67 \text{ N/mm}^{2}$	first step 1m	
$7 = \frac{7\omega}{Fvs} = \frac{500}{6} = 83.33 \text{ N/mm}^{-2}$ 2) A coording to Mar Shear Stread Theory Equivalant Twisting Momend $Te = \int M^{2} + T^{2} = \int (1 \times 106)^{2} + (3 \times 106)^{2}$ $Te = 3.16 \times 106 \text{ N.mm}$	Second step 3m	
Equaling with $Te = \frac{11}{16} \tau d^{3} = \frac{11}{16} \times 83.33. d^{3}$ $\therefore 3.16 \times 106 = 16.36 d^{3}$ $d = 57.80 \text{ mm} \approx 58 \text{ mm} \approx 60 \text{ mm}$ $(3) According to Maximum Normal Stream Theory$	Third step 3m	
$Me = \frac{1}{2} \left[M + \sqrt{M^2 + 7^2} \right] = \frac{1}{2} \left[\frac{3 \times 10^6 + 3 \cdot 16 \times 10^6}{Me} \right]$ $Me = \frac{3 \cdot 08 \times 10^6 \text{ N.mm}}{Me}$ $Me = \frac{11}{32} \times \frac{16 \times 20^3}{32} = \frac{11}{32} \times \frac{116 \cdot 67 \times 20^3}{Me}$ $\frac{1}{3 \cdot 08 \times 10^6} = \frac{11 \cdot 45 \times 20^3}{Me} \times \frac{116 \cdot 67 \times 20^3}{Me}$ $\frac{1}{3 \cdot 08 \times 10^6} = \frac{11 \cdot 45 \times 20^3}{Me} \times \frac{100}{Me} \times \frac{100}{Me} = \frac{100}{Me}$ $Me = \frac{100}{Me} \times \frac{100}{Me} \times \frac{100}{Me} = \frac{100}{Me} \times \frac{100}{Me}$		





$l_a x f x a = l_b x f x b$ or $l_a X a = I_b x b$ (i)		
We know that (1)		
$l = l_a + l_b \dots (ii)$		
From equations (i) and (ii), we have		
$l_a = \frac{lxb}{(a+b)} \&$		
$l_b = \frac{lxa}{(a+b)}$		
55	02	8 M
Isolating Joint A	Marks	
FAC Taking Efy = 0 -1 - FAR SIM45 = 0 -1 = FAR SIM45 = 0 -1 = FAR SIM45 FAR CUSS F FAR GUSS F FAR FARSING F FAR FARSING EFX = 0 FMR - FAR SIM45 FAR FARSING EFX = 0 FMR - FAR SIM45 FAR SIM45 FAR FAR SIM45	for all	
-1 - FAB SIM4S = 0	FBD of isolated	
$fm = \frac{1}{45}$ $fm = \frac{1}{5}$ $Fm = \frac{1}{5}$ $Fm = \frac{1}{5}$	joints	
$\frac{he}{hB} \cos 95$	Jonno	
The Facing Efactor	B	
FAB - FAB COUSIS = 0 FAC = 1KN T		
Mac = IKN T	1	
I solating Joint B Fisc Finds Finds Finds Fisc + Finds SIM 95=0 Fisc - 1.91 SIM 95=0 Fisc = 1KN T End Sim 95 = 0 Fisc = 1KN T	1m each	
AFBC FABSINAS FAB FEC + FAB CODE 5=0	for	
FABCOS45 FBC -1. 41 SIM45 = 0	each	
BC = IKN, T	membe	
$F_{\mathcal{B}} \in \frac{\varepsilon}{F_{\mathcal{B}}} = 0$	r with	
FBE S-IKN C	nature.	
$\frac{\text{Lsolating Uoint}}{\text{Fc}} \subseteq \frac{\text{E}}{\text{Fc}} = 0$ $-\frac{\text{Fc}}{\text{Fc}} = -\frac{\text{Fc}}{\text{Fc}} \frac{\text{Sol}}{\text{Fc}} = -\frac{1}{\text{Fc}} \frac{\text{Sol}}{\text{Fc}} = 0$ $-\frac{1}{\text{Fc}} - \frac{\text{Fc}}{\text{Fc}} \frac{\text{Sol}}{\text{Fc}} = 0$ $-\frac{1}{\text{Fc}} - \frac{\text{Fc}}{\text{Fc}} \frac{\text{Sol}}{\text{Fc}} = 0$ $-\frac{1}{\text{Fc}} - \frac{1}{\text{Fc}} \frac{\text{Sol}}{\text{Fc}} = 0$	si -	
$\frac{1}{5} = \frac{1}{5} = \frac{1}$		
FCPCOUSS +		
	-	
FOE FOESINGS - FOD - FOE COSGS = 0		
FCD = IKN T		
	6	

6.	Attempt any FOUR of the following:		4X4=16
a	 Keyway is a slot machined either on the shaft or in the hub to accommodate the key. It is cut by vertical or horizontal milling cutter. The keyway cut into the shaft reduces the load carrying capacity of shaft. This is due to stress concentration near the comers of the keyway and reduction in the crosssectionalarea of shaft. In other words, the torsional strength of shaft is reduced. The following relation of reduction factor is used to analyze the weakening effect of keyway is given by H. F. Moore. e = 1 - 0.2 (w/d) - 1.1(h/d) Where, e = shaft strength factor = Strength of shaft with keyway/Strength Of shaft Wlithout keyway w = Width of keyway, d = Diameter of shaft h = Depth of keyway = 112 x thickness of key = 1/2 x t It is usually assumed that strength of keyed shaft is 75% of solid shaft. Thus, after finding out dimensions of key, the reduction factor 'e' is Calculated and for safe design, its value should be less than 0.75. 	4m	4 m
b) Single Transverse Filet weld S=thread thickness W + 15 W + 15 Ten sile Stangth of Single Transverse Rilet weld Will = 0.707 x SX & X6t 2) Double Parallel Filet weld W + 15 W + 15 Will = 0.707 x SX & X6t 2) Double Parallel Filet weld W + 15 W + 15 Will = 0.707 x SX & X6t 2) Double Parallel Filet weld W + 15 W	2m 2m	4m

initial tension in a bolt, based on experiments, may be found by the		
relation $Pi = 2840 dN$		
Pi = Initial tension in a bolt, and		
d = Nominal diameter of bolt, in mm.		
2. Torsional shear stress caused by the frictional resistance of the		
threads during its tightening		
The torsional shear stress caused by frictional resistance of the threads		
during its tightening may be obtained by using the torsion equation.		
We know that		
$T/J = T_s/r$		
$T_s = T/J x r = \{ T/(\pi/32) x d_c^4 \} x \{ d_c/2 \} = 16 T/\pi (d_c)^3$		
Where $T_s =$ Torsional shear stress,		
T = Torque applied, and		
d_c = Minor or core diameter of thread		
3.Shear stress across the threads. The average thread shearing stress		
for the screw(T_s) is obtained by using the relation:		
$T_s = p/(\pi d_c x b x n)$		
Where $b = Width$ of the thread section at the root.		
The average thread shearing stress for the nut is		
$T_n = p/(\pi d x b x n)$		
Where $d = Major diameter$.		
4. Compression or crushing Stress on threads. The compression or		
crushing stress between the threads (G_c) may be obtained by using the		
relation :		
$G_c = p/\pi [d^2 - (d_c)^2]n$		
Where $d = Major$ diameter,		
$d_c = Minor diameter, and$		
n = Number of threads in engagement.		
5. Bending stress if the surfaces under the head or nut are not perfectly		
parallel to the bolt axis. When the outside surfaces of the parts to be		
connected are not parallel to each other, then the bolt will be subjected		
to bending action. The bending stress (\mathfrak{G}_b) induced in the shank of the		
bolt is		
given by		
$G_b = x.E/2l$		
where		
where $x = Difference$ in height between the extreme corners of the nut		
or		
head,		
I = Length of the shank of the bolt, and		
E = Young's modulus for the material of the bolt.		
	m	4m
The stresses in pipes due to the internal fluid pressure are determined		
by Lame's equation.		
According to Lame's equation,		
tangential stress at any radius x		
$Gt = \{ [p(ri)^2] / [(ro)^2 - (ri)^2] \} / \{ 1 + [(ro)^2 / x^2] \}$		
And Radial stress at any radius x		

	$ \begin{aligned} & \text{ fr } = \{ [p (ri)^2] / [(ro)^2 - (ri)^2] \} / \{ 1 - [(ro)^2 / x^2] \} \\ & \text{ where } p = \text{ Internal fluid pressure in the pipe,} \end{aligned} $		
	ri = Inner radius of the pipe, and		
	ro = Outer radius of the pipe		
f	Assumptions in the analysis of truss:-	4m	4 m
	1)The frame is a perfect one ie the relation $n=2j-3$ must be satisfied.	1m	
	2) All the members are hinged or pin jointed at the ends.	each	
	3) The loads are acting only at the joints.	point	
	4) The self weight of the member is neglected.		