MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
$\mathbf{1 .}$	A)	Attempt any three of the following: a) Araw a single line diagram of power system. Single line diagram of power system:	$\mathbf{1 2}$
Ans.			

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

	AC resistance is higher than DC resistance DC resistance is lower than AC resistance proximity effect is present for AC current R_{dc} is lower as DC current is uniformly distributed i.e. skin effect \& proximity effect is absent for DC current.	
d) Ans.	Write advantages of generalized circuit representation. Advantages of generalized circuit representation: 1. The generalized circuit equations are well suited to transmission lines. Hence for given any type of the transmission line (short, medium, long). The equation can be written by knowing the values of A B C D constants. 2. Just by knowing the total impedance and total admittance of the line the values of A B C D constants can be calculated. 3. By using the generalized circuit equations VRNL $V_{S}=A V_{R}+B I_{R}$ i.e. when $I R=0 V R N L=V_{S} / A$ Now the regulation of the line can be immediately calculated by $\%$ Voltage Regulation $=V_{S} / A-V_{R} / V_{R} X 100$ 4. Output power $=V_{R} I_{R} \operatorname{Cos} \phi_{\mathrm{R}}$ for $\ldots . .1 \phi \ldots$ ckt. $=3 V_{R} I_{R} \operatorname{Cos} \phi_{R}$ for $\ldots 3 \phi \ldots \ldots . . c k t$. Input power $=V_{S} I_{S} \operatorname{Cos} \phi_{S} \ldots \ldots \ldots \ldots . .$. $=3 \mathrm{~V}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}} \operatorname{Cos} \phi_{\mathrm{S}} \ldots3 \phi . . c k t$. losses in the line $=$ input - output 5. By calculating input and output power efficiency can be calculated. 6. Series circuit : When two lines are connected such that the output of the first line serves as output to the second line and the output of the second line is fed to the load, the two lines behave as to parts networks in cascade. Its ABCD constants can be obtain by using following matrix: $\left\|\begin{array}{ll} A & B \\ C & D \end{array}\right\|=\left\|\begin{array}{ll} A_{1} & B_{1} \\ C_{1} & D_{1} \end{array}\right\| \times\left\|\begin{array}{ll} A_{2} & B_{2} \\ C_{2} & D_{2} \end{array}\right\|$	4M Any 4 advanta ges 1M each

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

		7. When two transmission lines are connected in parallel then the resultant two part network can be easily obtained by $\begin{gathered} A=\frac{A_{1} B_{2}+A_{2} B_{1}}{B_{1}+B_{2}} \\ B=\frac{B_{1} B_{2}}{B_{1}+B_{2}} \\ D=\frac{D_{1} B_{2}+D_{2} B_{1}}{B_{1}+B_{2}} \\ C=C_{1}+C_{2}-\frac{\left(A_{1}-A_{2)}\left(D_{2}-D_{1}\right)\right.}{B_{1}+B_{2}} \end{gathered}$	
1.	B) a) Ans.	Attempt any one of the following: Derive an expression for generalized circuit constants for two networks connected in series. Applying generalized circuit equation for network (1) $\begin{aligned} & \operatorname{GCE}(1)=\mathrm{V}_{\mathrm{S}}=\mathrm{A} \cdot \mathrm{~V}_{\mathrm{R}}+\mathrm{B} \cdot \mathrm{I}_{\mathrm{R}} \\ & \mathrm{GCE}(2)=\mathrm{I}_{\mathrm{S}}=\mathrm{C} \cdot \mathrm{~V}_{\mathrm{R}}+\mathrm{D} \cdot \mathrm{I}_{\mathrm{R}} \end{aligned}$ For Network (1) $\begin{align*} & \mathrm{V}_{\mathrm{S}}=\mathrm{A}_{1} \mathrm{~V}+\mathrm{B}_{1} \mathrm{I} \ldots \tag{1}\\ & \mathrm{I}_{\mathrm{S}}=\mathrm{C}_{1} \mathrm{~V}+\mathrm{D}_{1} \mathrm{I} \ldots . \tag{2} \end{align*}$	6 6M 1M 1 M

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

		Skin effect depends on factors: - Current - Permeability of material - Frequency - Conductor diameter - Diameter - Material of conductor Proximity effect: When the alternating current is flowing through a conductor alternating magnetic flux is generate surrounding the conductor. This magnetic flux associates with the neighboring conductor and generate circulating currents. This circulating currents increases resistance of conductor. This phenomenon is called as, "proximity effect". Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material	Skin effect 3M Proximit y effect 3M
2.	a) Ans.	Attempt any two of the following: i) Define generalized circuit and generalized circuit constants. Generalized Circuit: An passive, linear, bilateral network with two port terminals is known as generalized circuit. A transmission line is a 2 port network, two input terminals where power enters \& two output terminals where power leaves the network.	$\begin{gathered} \hline 16 \\ 4 M \end{gathered}$

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
8. The transmission line performance can be studied at any load condition. \\
9. The nature of compensation of reactive power can be analyzed. \\
10. Any type of transmission line can be represented into circle diagram
\end{tabular} \& \\
\hline \begin{tabular}{l}
b) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Determine the inductance per \(\mathbf{k m}\) of a transposed double circuit \(3 \phi\) line shown in Fig.1. Each circuit of the line remains on its own side. The diameter of the conductor is 2.532 cm . \\
(Note: Numerical is based on double circuit. Consider if student has attempted to solve).
\end{tabular} \& 8M \\
\hline \& Given,
\[
\mathrm{d}=2.532 \mathrm{~cm}
\]
\[
\begin{aligned}
\& \therefore r=0.001266 m \\
\& \therefore r^{\prime}=0.7788 \times r \\
\&=0.7788 \times 0.01266 \\
\&=9.85 \times 10^{-3} \\
\& \mathrm{D}_{\mathrm{ab}}^{\prime}=\mathrm{D}_{\mathrm{bc}}{ }^{\prime}=\mathrm{D}_{\mathrm{a}^{\prime} \mathrm{b}}=\mathrm{D}_{\mathrm{cb}}= \sqrt{4^{2}+8.25^{2}} \\
\&=9.16 \mathrm{mt}
\end{aligned}
\] \& \(1 M\)

$1 M$

\hline
\end{tabular}

MODEL ANSWER

WINTER - 2017 EXAMINATION

\begin{tabular}{|c|c|c|}
\hline \& \& $2 M$

$2 M$
$1 M$

\hline | c) |
| :--- |
| Ans. | \& | A $3 \Phi 132 \mathrm{KV}$ overhead line delivers 50 MVA at 132 KV and power factor 0.8 lagging at its receiving end. The constants of the line are $A=0.98 \angle 3^{0}$ and $B=110 \angle 75^{0} \Omega /$ phase. Find |
| :--- |
| i) Sending end voltage and power angle. |
| ii) Sending end active and reactive power. |
| iii) Capacity of static compensation equipment at the receiving end to reduce the sending end voltage to 140 KV for the same load. |
| i) Sending end voltage and power angle. |
| Receiving End current | \& 8M

\hline
\end{tabular}

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Sending end Active power \(=162.97 \mathrm{MW}\) \\
Sending end Reactive power \(=408.61 \mathrm{MVAR}\) \\
iii) Calculate capacity of static equipment:
\end{tabular} \& \[
2 M
\] \\
\hline 3. \& \begin{tabular}{l}
a) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Attempt any four of the following: \\
Write the role of power system engineer in PS. \\
(Note: Any other relevant points shall be consider) \\
i. On the planning side he or she has to make decisions on how much electricity to generate \\
ii. For operation of the power system he has to plan for generation of electricity where, when and by using what fuel. \\
iii. He has to plan for expansion of the existing grid system and also for new grid system. \\
iv. He coordinated operation of a vast and complex power network, so as to achieve a high degree of economy and reliability. \\
v. He has to be involved in constructional task of great magnitude both in generation and transmission.
\end{tabular} \& 16
\(4 M\)

Any 4
points
1M each

\hline
\end{tabular}

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

	vi. He has to solve problem of power shortages./ outage of line vii. He has to evolve strategies for energy conservation and load management. viii. For solving the power system problems he has to update with new technology method.		
b) Ans.	Write the steps for drawing a sending end circle diagram with neat diagram. i. Step-1: Draw the $\mathrm{X}-\mathrm{Y}$ plane in which plane X represents the active power (MW) \& axis-y-represents the Reactive power (MVA). With proper scale. ii. Step-2: The centre of sending end circle is located at the tip of phasor $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{\mathrm{S}}\right\|^{2}<\beta-\alpha$ drawing OC_{S} from positive MW axis. OR Locate X and Y coordinates of the centre are $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{S}\right\|^{2} \operatorname{Cos}(\beta-\alpha)$ and $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{\mathrm{S}}\right\|^{2} \operatorname{Sin}(\beta-\alpha)$ and mark the point Cs. Join OCs. iii. Step-3: Radius $=\left\|V_{S} \\| V_{R}\right\| / \mid B$ Draw the Curve with the radius of sending end circle from centre Cs to the scale. iv. Step-4: Locate point Lon X axis such that OL represents Ps to the scale. Draw perpendicular at L to X axis which cuts the circle at point at N. Join NCs. N is the operating point of the system. Step-5: Complete the triangle ONL which represents power triangle at sending end.	Steps 2M Diagram 2M	
c)	A 400 KV 3-phase bundled conductor line with two subconductors per phase has a horizontal configuration as shown in Fig.2. The radius of each sub-conductor is 1.6 cm . Find the inductance per phase per km of the line.	4M	

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

	$\begin{aligned} & \mathrm{D}_{\mathrm{eq}}=3 \sqrt{\mathrm{D}_{\mathrm{ab}} \mathrm{D}_{\mathrm{bc}} \mathrm{D}_{\mathrm{ac}}} \\ &= 3 \sqrt{11.97 \times 11.97 \times 23.99} \\ &= 15.09 \mathrm{~m} \\ & \mathrm{~L}=2 \times 10^{-7} \log _{\mathrm{e}} \frac{\mathrm{D}_{\mathrm{eq}}}{\mathrm{D}_{\mathrm{s}}} \\ &= 2 \times 10^{-7} \log _{\mathrm{e}} \frac{15.09}{0.075} \\ &= 1.06 \mathrm{MH} / \mathrm{km} \end{aligned}$	${ }^{1 / 2} \boldsymbol{M}$ ${ }^{1 / 2} \boldsymbol{M}$
d) Ans.		$\begin{aligned} & \hline 4 \mathrm{M} \\ & { }^{1 / 2} M \end{aligned}$

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

	$\begin{aligned} & \beta-\delta=66.296 \\ \mathrm{Q}_{\mathrm{R}} & =\frac{\mathrm{V}_{\mathrm{s}} \mathrm{~V}_{\mathrm{R}}}{\mathrm{~B}} \sin (\beta-\delta)-\frac{\mathrm{AV}_{R^{2}}}{\mathrm{~B}} \sin (\beta-\alpha) \\ & =\frac{140 \times 132}{110} \sin (66.296)-\frac{0.98 \times 132^{2}}{110} \sin (75-3) \\ & =153.826-109.59 \\ \mathrm{Q}_{\mathrm{R}} & =44.236 \mathrm{MVAR} \end{aligned}$ Capacity of phase modifier $\begin{aligned} & =44.236-24 \\ & =20.236 \mathrm{MVAR} \end{aligned}$	$\begin{aligned} & { }^{1 / 2} \boldsymbol{M} \\ & { }^{1 / 2} \boldsymbol{M} \\ & { }^{1 / 2} M \\ & { }^{1 / 2} \boldsymbol{M} \end{aligned}$
e) Ans.	Explain the effect of earth field on transmission line capacitance. As earth is also a perfect conductor its electric field affect the outside electric field i.e. capacitance of the line conductor. For example consider a circuit consisting single over head conductor with a return path through the earth. Assume the earth as a perfectly horizontal sheet of infinite extent which therefore acts like an equipotential surface. Now the earth has a charge equal in magnitude and opposite to that of the conductor. Hence potential difference exists between the conductor and the earth. And the electric flux is perpendicular to the earth's equipotential surface. Since the surface is assumed to be a perfect conductor. Imagine a fictitious conductor of the same size and shape as the over head conductor lying directly below the original conductor at a distance equal to twice the distance of the conductor above the plane of the earth by a distance equal to the distance of the overhead conductor above the earth. Suppose the earth is removed and a charge equal and opposite to that on the overhead conductor is assumed on the fictitious conductor. Now the plane midway between the original conductor and the fictitious conductor is an equipotential surface and occupies the same position as that of the earth. Now the flux between the overhead conductor and this equipotential surface is the same as that which existed between the conductor and the earth. Thus for the calculation of the capacitance, the earth may be replaced by a conductor at a distance equal to that of the overhead conductor above the earth from	4M Explana tion 4M

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

		the earth below it. i.e. earth is replaced by a equipotential surface and a conductor. This conductor has a charge equal in magnitude and opposite in sign to that of the original conductor and is called the image conductor.	
4.	$\begin{gathered} \text { A) } \\ \text { a) } \\ \text { Ans. } \end{gathered}$	Attempt any three of the following: Derive an expression for capacitance of two wire line. Capacitance of two wire line: Consider two wire line as shown in fig. excited from single phase source. The line develops equal and opposite sinusoidal charges on the two conductors which can be represented as q_{a} and q_{b} so that $q_{a}=$ $-q_{b}$. The potential difference across conductors $\mathrm{a} \& \mathrm{~b}$ as V_{ab} can be written in terms of the contribution made by q_{a} and q_{b} by applying superposition theorem As $\mathrm{D} \ggg \mathrm{r}$, assume that $\mathrm{D}+\mathrm{r}=\mathrm{D}-\mathrm{r}=\mathrm{D}$ Thus $V_{a b}=\frac{1}{2 \pi k}\left(\mathrm{q}_{\mathrm{a}} \ln \frac{D}{r_{a}}+q_{b} \ln \frac{r_{b}}{D}\right)$ Since $q_{a}=-q_{b}$, we have $V_{a b}=\frac{q_{a}}{2 \pi k}\left(q_{a} \ln \frac{D^{2}}{r_{a} r_{b}}\right)$ The line capacitance C_{ab} is then	12 4 M $1 M$ $1 M$

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

$$
\begin{gathered}
C_{a b}=\frac{q_{a}}{V_{a b}}=\frac{\pi k}{\ln \left(\frac{D}{\left(r_{a} r_{b}\right)^{1 / 2}}\right)} \frac{F}{m} \text { length of line } \\
\mathbf{O R} \\
C_{a b}=\frac{0.0121}{\ln \left(\frac{D}{\left(r_{a} r_{b}\right)^{1 / 2}}\right)} \frac{\mu F}{m}
\end{gathered}
$$

If $r_{a}=r_{b}=r$ then

$$
C_{a b}=\frac{0.0121}{\ln \left(\frac{D}{r}\right)} \frac{\mu F}{k m}
$$

b) A $275 \mathrm{KV}, 3 \phi$ line has the following line parameters, $\mathrm{A}=\mathbf{0 . 9 3}$determine the sending end voltage if the load of 250 MW at 0.85 lagging PF is being delivered at the receiving end.
Ans.
given: $V_{R}=275 K V, A=0.93 \angle 1.5^{\circ}, B=115 \angle 77^{\circ}$
Power delivered - PR $=250 \mathrm{Mw}$, 0.85lag
load $=\sqrt{3} V_{R} I_{R} \cos \emptyset_{R}=250 \times 10^{6}=$
$=\sqrt{3} \times 275 \times 10^{3} \times I_{R} \times 0.85$
$\therefore I_{R}=617.49 \mathrm{Amp}$

$$
\emptyset_{R}=\cos ^{-1} 0.85=31.79
$$

$$
V_{S}=A V_{R}+B I_{R}
$$

$$
V_{S}=0.93 \angle 1.5 \times \frac{275 \times 10^{3}}{\sqrt{3}} \angle 0+115 \angle 77 \times 617.49 \angle-31.79
$$

$$
V_{s}=204948.51 \angle-15.35^{0}
$$

$$
V_{s}(\text { phase value })=204.948 \mathrm{KV}
$$

$V_{s}($ line value $)=342.31 \mathrm{KV}$
c) Draw the equivalent circuit diagram of

i) Alternator
 ii) Transformer.

Ans.

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

	d) Ans.	State the expression for complex power at receiving end of transmission line. Derive the condition for max. power at receiving end. The expression for complex power at receiving end of transmission line...... $P_{R}=\frac{\mathrm{V}_{\mathrm{S}} \mathrm{~V}_{\mathrm{R}}}{\mathrm{~B}} \cos (\beta-\delta)-\frac{\mathrm{AV}_{\mathrm{R}}^{2}}{\mathrm{~B}} \cos (\beta-\alpha)$ Where $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{R}}$-sending end and receive end voltages $\mathrm{A} \angle \alpha, B \angle \beta-\mathrm{GCC}$ of line δ - load angle Condition for maximum power at receiving end can be obtained by Differentiate above equation with respect to variable load (δ) and equating it to zero. $\begin{gathered} \frac{\mathrm{dP}_{\mathrm{R}}}{\mathrm{~d} \delta}=-\frac{\mathrm{V}_{\mathrm{S}} \mathrm{~V}_{\mathrm{R}}}{\mathrm{~B}} \sin (\beta-\delta)+0=0 \\ \frac{\mathrm{~V}_{\mathrm{S}} \mathrm{~V}_{\mathrm{R}}}{\mathrm{~B}} \sin (\beta-\delta)=0 \\ \sin (\beta-\delta)=0 \\ (\beta-\delta)=0 \end{gathered}$	4 M $1 M$ $1 M$ $1 M$
		$\beta=\delta$	1M
4.	$\begin{gathered} \text { B) } \\ \text { a) } \\ \text { Ans. } \end{gathered}$	Attempt any one of the following: Explain how generalized circuit constants are measured. Measurement of Generalized Circuit Constants can be done by conducting Open circuit and short circuit test. If a transmission line is already erected, the constants can be measured by conducting the open circuit and short circuit test on the two ends of the line. Consider a transmission line and determine the impedances which are complex quantities. The magnitudes are obtained by ratio of the voltages and currents and the angle with the help of wattmeter reading. The connection diagram are shown below	$\begin{gathered} \hline 6 \\ 6 M \\ \\ \hline 1 M \end{gathered}$

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

	$\begin{aligned} & \text { Voltage regulation }=\frac{\frac{V s}{A}--V_{R F L}}{V_{R F L}} \times 100 \\ & =\frac{\frac{133.89}{0.85}-132}{127} \times 100=19.33 \% \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \end{aligned}$
b) Ans.	Explain why reactive power compensation is necessary. Explain working of synchronous condenser in this. Need of Reactive power compensation: Power system is well designed when it gives good quality of reliable supply i.e variation at receiving end is within limit (+/- 5%). If variation is more performance of equipment is affected. Variation in Voltage indicates unbalance in reactive power generated $\mathrm{Q}_{\mathrm{s}} \&$ reactive power consumed by load Q_{r} If $\mathrm{Q}_{\mathrm{s}}>\mathrm{Q}_{\mathrm{r}}---\mathrm{V}_{\mathrm{r}}$ increases If $\mathrm{Q}_{\mathrm{S}}<\mathrm{Q}_{\mathrm{r}}----\mathrm{V}_{\mathrm{r}}$ decreases If $\mathrm{Q}_{\mathrm{s}}=\mathrm{Q}_{\mathrm{r}}---\mathrm{V}_{\mathrm{r}}$ flat cha So to maintain balance in $\mathrm{Q}_{\mathrm{s}} \& \mathrm{Q}_{\mathrm{r}}$ Reactive power compensation is required. Synchronous condenser any 4 points 1 mark each - It is synchronous motor operating at no load with over excitation - It is used for compensating large amount of reactive power - It is used in load dispatch center - It is dynamic/ rotating compensation equipment - It is costly \& requires maintenance OR	8M $4 M$ Any 4 points 1M each

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

			$2 M$ $1 M$ $2 M$ $1 M$ $1 M$
6.	a)	Attempt any four of the following: A $50 \mathrm{~Hz}, 3 \boldsymbol{3}, 275 \mathrm{KV}, 400 \mathrm{~km} \mathrm{x}$ mission line has the following parameters: $\mathrm{R}=0.035 \Omega / \mathrm{km} / \mathrm{ph}, \mathrm{L}=1.1 \mathrm{mH} / \mathrm{km} / \mathrm{ph}, \mathrm{C}=0.012 \mu$ F/km/ph. If the line is supplied at 275 KV , determine the MVA rating of a shunt reactor having negligible losses. The receiving	$\begin{gathered} 16 \\ 4 M \end{gathered}$

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510
end volt. Is 275 KV when line is delivering no load. Use nominal π method.
Ans. $\mathrm{F}=50 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{s}}=275 \mathrm{kv}, \mathrm{L}=300 \mathrm{~km}, \mathrm{~V}_{\mathrm{R}}=275 \mathrm{kv}$,
$\mathrm{R}=0.0035 \Omega / \mathrm{km} / \mathrm{ph}, \mathrm{L}=1.1 \mathrm{mH} / \mathrm{km} / \mathrm{ph}=1.1 \mathrm{X} 10^{-3} \mathrm{H} / \mathrm{km} / \mathrm{ph}$, $\mathrm{C}=0.012 \mu \mathrm{~F} / \mathrm{km} / \mathrm{ph}=0.012 \mathrm{X} 10^{-6} \mathrm{~F} / \mathrm{km} / \mathrm{ph}$
At no load condition i.ePr=0MVA Rating of shunt reactor?
Use nominal π
$A=1+\frac{Y Z}{2}$ AND $B=Z$

$$
Z=R+j X_{L}=\sqrt{R^{2}+X_{L}^{2}}
$$

$X_{L}=2 \pi F L=2 \times \pi \times 50 \times 1.1 \times 10^{-3} \times 300=2.072 \Omega$
$R=0.5 \times 300=1.05 \Omega$
$Z=1.05+2.072=2.322 \angle 63.12 \Omega$
$Y=j w c=j \times 2 \pi \times 50 \times 0.012 \times 10^{-6} \times 300$
$=0.0011304 \times 10^{-6}=j 0.0011304=0.0011304 \angle 90^{0}$
$\therefore A=1+(0.0011304 \angle 90,(2.322 \angle 63.12)$
$=1+\frac{0.002624 \angle 153.12}{2 \angle 0}$
$=1+0.00131 \angle 153.12=1+(-0.001168+j 0.000592)$
$=0.9988+j 0.000592$
$=0.9988 \angle 0.0339^{0}$

$$
B=Z=2.322 \angle 63.12 \Omega
$$

$$
\therefore|A|=0.9988 \angle \alpha=0.0339 \angle \beta=2.322 \angle \beta=63.12
$$

Receiving end power is given by.....

$$
\therefore P_{r}=\frac{\left|V_{S}\right|\left|V_{r}\right|}{|B|} \cos (\beta-\delta)-\frac{|A|\left|V_{r}\right|^{2}}{|B|} \cos (\beta-\alpha)
$$

At no load $\mathrm{Pr}=0$
$\therefore O=\frac{275 \times 275}{2.322} \cos (\beta-\delta)-\frac{0.9988 \times 275}{2.322} \cos (63.12-0.0339)$
$\therefore(\beta-\delta)=63.12^{0}$
Now substituting in equation for Q_{r},

$$
\therefore Q_{r}=\frac{\left|V_{s}\right|\left|V_{r}\right|}{|B|} \sin (\beta-\delta)-\frac{|A|\left|V_{r}\right|^{2}}{|B|} \sin (\beta-\alpha)
$$

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

	$\begin{gathered} =\frac{275 \times 275}{2.322} \sin (63.12)-\frac{0.9988 \times 275}{2.322} \sin (63.12-0.0339) \\ 29050.011-29006.44 \\ Q_{r}=43.566 M V A R \end{gathered}$ Thus the line supplies 43.66 MVAR lagging VAR at no load, thus the rating of shunt reactor 43.566MVAR	1M
b) Ans.	Draw the pu impedance diagram for the P.S. shown in Fig.4, Neglect resistance and use a base of $100 \mathrm{MVA}, 220 \mathrm{KV}$ in 50 Ω line. The ratings of the generator, motor and transformer are, generator $-\mathbf{4 0 M V A}, 25 \mathrm{KV}, \mathrm{X}=\mathbf{2 0 \%}$, Motor $=50 \mathrm{MVA}, 11 \mathrm{KV}$, $\mathrm{X}=\mathbf{3 0 \%}, \mathrm{Y}-\mathrm{Y}$ transformer $=\mathbf{4 0 M V A}, \mathbf{3 0} / 220 \mathrm{KV}, \mathrm{X}=\mathbf{1 5 \%} \mathrm{Y}-\Delta$ transformer, 30 MVA, 11/220 KV, X = 15\% Fig.4. Base - 100MVA Base KV - 220 KV in tr. Line \therefore Base KV 11 KV for Gen.\& Motor side. Calculation X_{pu} (1) Generator - $\begin{aligned} X_{\text {pu }} \text { new }=X_{P U} \text { old } X & \frac{M V A_{\text {new }}}{M V A_{\text {old }}} X\left(\frac{K V_{\text {old }}}{K V_{\text {new }}}\right)^{2} \\ & =0.20 \times \frac{100}{40} \times\left(\frac{25}{11}\right)^{2} \\ & =2.58_{\text {pu }} \end{aligned}$ (2) Transformer-	4M

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

	$\begin{aligned} & \mathrm{X}_{\mathrm{pu}} \text { new }=0.15 \times \frac{100}{30} \times\left(\frac{11}{11}\right)^{2} \\ & \boldsymbol{O R} \\ &= 0.15 \times \frac{100}{30} \times\left(\frac{220}{220}\right)^{2} \\ &= 0.5_{\mathrm{pu}} \end{aligned}$ (3) Transmission line- $\begin{aligned} X_{p u}=\frac{X_{\text {actual }}}{X_{\text {Base }}} & =\frac{X_{\text {actual }}}{K V_{B^{2}}} \text { X MVA }_{B} \\ & =\frac{50}{(220)^{2}} \times 100=0.103_{\mathrm{pu}} \end{aligned}$ (4) Motor- $\begin{aligned} \mathrm{X}_{\mathrm{pu} \mathrm{new}} & =0.30 \times \frac{100}{50} \times\left(\frac{11}{11}\right)^{2} \\ & =0.6_{\mathrm{pu}} \end{aligned}$	$1 M$
c) Ans.	Derive the expression for inductance of single phase line composed of solid conductors and bundled conductors. (Note: Derivation for solid conductors and bundled conductors is different. If students attempt any one, must be considered for 4 marks) Inductance of Single Phase to Line Composed of Solid Conductors:	4M

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

	$\begin{aligned} & \mathrm{S}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{R}} \mathrm{~V}_{\mathrm{S}}}{\mathrm{~B}} \angle(\beta-\delta)-\frac{\mathrm{AV}_{\mathrm{R}}^{2}}{\mathrm{~B}} \angle(\beta-\alpha) \ldots \ldots \\ & \mathrm{P}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{R}} \mathrm{~V}_{\mathrm{S}}}{\mathrm{~B}} \cos (\beta-\delta)-\frac{\mathrm{AV}_{\mathrm{R}}^{2}}{\mathrm{~B}} \cos (\beta-\alpha) \\ & \mathrm{Q}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{R}} \mathrm{~V}_{\mathrm{S}}}{\mathrm{~B}} \sin (\beta-\delta)-\frac{\mathrm{AV}_{\mathrm{R}}^{2}}{\mathrm{~B}} \sin (\beta-\alpha) \end{aligned}$ Power flow equation at the sending end is given by $\begin{aligned} & \mathrm{S}_{\mathrm{S}}=\frac{\mathrm{AV}_{\mathrm{S}}^{2}}{\mathrm{~B}} \angle(\beta-\alpha)-\frac{\mathrm{V}_{\mathrm{s}} \mathrm{~V}_{\mathrm{R}}}{\mathrm{~B}} \angle(\beta+\delta) \\ & \mathrm{P}_{\mathrm{S}}=\frac{\mathrm{AV}_{S}^{2}}{\mathrm{~B}} \cos (\beta-\alpha)-\frac{\mathrm{V}_{\mathrm{S}} \mathrm{~V}_{\mathrm{R}}}{\mathrm{~B}} \cos (\beta+\delta) \\ & \mathrm{Q}_{\mathrm{S}}=\frac{\mathrm{AV}_{\mathrm{S}}^{2}}{\mathrm{~B}} \sin (\beta-\alpha)-\frac{\mathrm{V}_{\mathrm{S}} \mathrm{~V}_{\mathrm{R}}}{\mathrm{~B}} \sin (\beta+\delta) \end{aligned}$ Where $\mathrm{P}_{\mathrm{R}}=$ Real or active power in $\mathrm{MW}, \mathrm{Q}_{\mathrm{R}}=$ Reactive power in MVAR at receiving end $\mathrm{P}_{\mathrm{s}}=$ Real or active power in MW, $\mathrm{Q}_{\mathrm{s}}=$ Reactive power in MVAR at sending end $\mathrm{V}_{\mathrm{S}}=$ Sending end voltage per phase in KV $\mathrm{V}_{\mathrm{R}}=$ Receiving end voltage per phase in KV $\delta=$ Power angle A, B = Generalized Circuit Constant	${ }^{1 / 2} M$ ${ }^{1 / 2} M$ $1 M$ ${ }^{1 / 2} M$
e) Ans.	A medium transmission line has series impedance is (20+j52) Ω and shunt admittance is $316 \times 10^{-6} \mathrm{~S} / \mathrm{ph}$. Calculate $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ constants of the line assuming nominal ' T ' circuit. $\begin{aligned} & Z=20+j 52 \Omega \\ & Y=316 \times 10^{-6} S \end{aligned}$ for NominalT - circuit $\begin{aligned} & \quad A=D=1+\frac{Y Z}{2}, B=Z\left(1+\frac{y z}{4}\right), C=Y \\ & A=D=\frac{1+y z}{2}=1+\left[\frac{\left(316 \times 10^{-6}\right)(20+j 52)}{2}\right] \\ & A=1+\frac{8.80 \angle 68.96}{2} \\ & A=1+4.108 \times 10^{-3} \end{aligned}$	4M

(ISO/IEC - 27001-2005 Certified)
MODEL ANSWER
WINTER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

	$A=1.00 \angle 0.23=D$	$\mathbf{2 M}$
$C=Y=316 \times 10^{-6}$ mhos		
$B=Z\left(1+\frac{y z}{4}\right)=316 \times 10^{-6}\left[1+\frac{\left(316 \times 10^{-6}\right)(20+j 52)}{4}\right]$	$\boldsymbol{1 M}$	
	$=8.60 \times 10^{-4} \angle 48.92$ siemens	
		$\boldsymbol{1 M}$

