

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

17510

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
1.	A) a) Ans.	Attempt any three of the following: Draw a single line diagram of power system. Single line diagram of power system:	12 4M

Г

٦

MODEL ANSWER

WINTER - 2017 EXAMINATION

Consider a single-phase load fed from a source as in Fig. Let $V = V \leq 0$ $I = I \leq 0 = 0$ Complex power flow in a single-phase load IM When θ is positive, the current lags behind voltage. This is a convenient choice of sign of θ in power system where loads have mostly lagging power flow. Complex power flow in the direction of current indicated is given by $S = VI^*$ $= V I \leq 0$ $= V I Z = 0$ $= V I Z = 0$ IM That means in electrical engineering Q is positive when load is inductive and negative when load is capacitive. In order to get the proper sign in power system analysis, for Q it is necessary to find out VI* instead of V*I which will reverse sign for Q. As if S = V*I = VI $\angle -\theta_1 + \theta_2$ $= VI \cos(\theta_1 - \theta_2) - jVI \sin(\theta_1 - \theta_2)$ $= P - jQ$ Mence to get same sign in power system the complex power S is defined as S = VI* instead of V* I. Compare between AC and DC resistance in power system. 4M
Income Complex power flow in the direction of current indicated is given by $S - VT^+$ $- V I \neq 0$ $- V I \sin 0 - P + jQ$ IMThat means in electrical engineering Q is positive when load is inductive and negative when load is capacitive. In order to get the proper sign in power system analysis, for Q it is necessary to find out VI* instead of V*I which will reverse sign for Q. As if $S = V*I = VI \angle -\theta_1 + \theta_2$ $= VI \angle -(\theta_1 - \theta_2)$ $= VI \cos(\theta_1 - \theta_2) - jVI \sin(\theta_1 - \theta_2)$ $= P - jQ$ IMHence to get same sign in power system the complex power S is defined as S = VI* instead of V*I.IM
Compare between AC and DC resistance in power system.Image is positive when load is is positive when load is inductive and negative when load is capacitive.Image is positive when load is capacitive.In order to get the proper sign in power system analysis, for Q it is necessary to find out VI* instead of V*I which will reverse sign for Q. As if $S = V*I = VI \angle -\theta_1 + \theta_2$ $= VI \angle -(\theta_1 - \theta_2)$ $= VI \cos(\theta_1 - \theta_2) - jVI \sin(\theta_1 - \theta_2)$ $= P - jQ$ Image is positive when load is capacitive.Image is provided as $S = VI*$ instead of V*I which will reverse sign for Q.Image is positive when load is capacitive.Image is positive is positive.Image is positive is positive is positive is positive.Image is positive is positive.Image is positive is positive is positive.Image is positive is positive.Image is positive is positive is positive.Image is positive is positive.Image is positive is positive is positive.Image is positive is positive is positive is positive is positive is positive is positive.Image is positive is positive.Image is positive is positive is positive is positive is positive is positive.Image is positive.Image is positive is positive is positive is positive is positive.Image is positive.Image is positive is positive is positive is positive is positive is positive is positive.Image is positive.Image is positive is positive is p
$= VI \angle - (\theta_1 - \theta_2)$ $= VI \cos(\theta_1 - \theta_2) - jVI \sin(\theta_1 - \theta_2)$ = P - jQ <i>IM</i> Hence to get same sign in power system the complex power S is defined as S = VI* instead of V* I. C) Compare between AC and DC resistance in power system. 4M
$= VI \cos(\theta_1 - \theta_2) - jVI \sin(\theta_1 - \theta_2)$ $= P - jQ$ IM Hence to get same sign in power system the complex power S is defined as S = VI* instead of V* I. (C) $Compare between AC and DC resistance in power system.$ $4M$
= P - jQ IM Hence to get same sign in power system the complex power S is defined as S = VI* instead of V* I. IM C $Compare between AC and DC resistance in power system.$ IM
Hence to get same sign in power system the complex power S is defined as S = VI* instead of V* I. c) Compare between AC and DC resistance in power system. 4M
c) Compare between AC and DC resistance in power system. 4M
Ans. AC resistance DC resistance
R_{ac} = Resistance offered for R_{dc} = Resistance offered for flow of AC Current flow of DC Current Any 4
$R_{ac} = Effective resistance = R_{da} = Ohmic resistance = ol/a$
Average cu loss in conductor IM each IM each

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

	AC resistance is higher than DC	DC resistance is lower than AC	
	resistance	resistance	
	R _{ac} is higher as skin effect &	R_{dc} is lower as DC current is	
	proximity effect is present for	uniformly distributed i.e. skin	
	AC current	effect & proximity effect is	
		absent for DC current.	
d)	Write advantages of generalized	circuit representation.	4 M
Ans.	Advantages of generalized circui	t representation:	
	1. The generalized circuit equatio	ns are well suited to transmission	
	lines. Hence for given any typ	be of the transmission line (short,	
	medium, long). The equation ca	n be written by knowing the values	Any 4
	of A B C D constants.		advanta
	2. Just by knowing the total impe	edance and total admittance of the	ges 1M
	line the values of A B C D const	tants can be calculated.	each
	3. By using the generalized circuit	equations VRNL	
	$V_{S} = AV_{R} + BI_{R}$ i.e. when IR = 0V	$RNL = V_S / A$	
	Now the regulation of the line can	be immediately calculated by	
	% Voltage Regulation = V_S / A -	$V_R / V_R X 100$	
	4. Output power = $V_R I_R \cos \phi_R$	for1øckt.	
	$= 3V_{\rm P} I_{\rm P} \cos \phi_{\rm P}$ for 3ϕ	ckt	
	Input power = $V_S I_S \cos \phi_S$	1 φ ckt.	
	$= 3 V_{S}I_{S} \cos \phi_{S} \dots 3\phi$ ckt.		
	losses in the line $=$ input $-$ output		
	5. By calculating input and o	utput power efficiency can be	
	calculated.		
	6. Series circuit : When two lines	are connected such that the output	
	of the first line serves as output	to the second line and the output of	
	the second line is fed to the loa	id, the two lines behave as to parts	
	networks in cascade. Its ABCD	constants can be obtain by using	
	following matrix:		
	1002 N 01207 - 1047 - 10		
	$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A_1 \\ C_1 \end{vmatrix}$	$\begin{vmatrix} B_1 \\ D_1 \end{vmatrix} \times \begin{vmatrix} A_2 & B_2 \\ C_2 & D_2 \end{vmatrix}$	

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

		7. When two transmission lines are connected in parallel then the resultant two part network can be easily obtained by $A = \frac{A_1B_2 + A_2B_1}{B_1 + B_2}$ $B = \frac{B_1B_2}{B_1 + B_2}$ $D = \frac{D_1B_2 + D_2B_1}{B_1 + B_2}$ $C = C_1 + C_2 - \frac{(A_1 - A_2)(D_2 - D_1)}{B_1 + B_2}$	
1.	B) a)	Attempt any one of the following: Derive an expression for generalized circuit constants for two	6 6M
	Ang	networks connected in series.	
	Ans.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M
		Applying generalized circuit equation for network (1)	
		GCE (1) = $V_{S} = A.V_{R} + B.I_{R}$	
		GCE (2) = $I_{S} = C.V_{R} + D.I_{R}$	
		For Network (1) $V_S = A_1 V + B_1 I(1)$ $I_S = C_1 V + D_1 I(2)$	1M

Subject: Pow	WINTER - 2017 EXAMINATION er System Analysis Subject Code: 17	510
	For Network (2)	
	$V = A_2.V_R + B_2.I_R$ (3)	114
	$I = C_2 V_R + D_2 I_R$ (4)	11/1
	Substitute equation (3) & (4) in equation (1) & (2)	
	$V_{S} = A_{1} (A_{2}.V_{R} + B_{2}.I_{R}) + B_{1} (C_{2}.V_{R} + D_{2}.I_{R})$	
	$V_{S} = A_{1}.A_{2}.V_{R} + A_{1}.B_{2}.I_{R} + B_{1}.C_{2}.V_{R} + B_{1}.D_{2}.I_{R}$	
	$V_{S} = (A_{1}.A_{2} + B1.C_{2}) V_{R} + (A_{1}.B_{2} + B_{1}.D_{2}) I_{R}$	
	Comparing with standard GCE (1)	
	$\mathbf{A} = \mathbf{A}_1 \cdot \mathbf{A}_2 + \mathbf{B}_1 \cdot \mathbf{C}_2$	$1^{1/2}M$
	$\mathbf{B} = \mathbf{A}_1 \cdot \mathbf{B}_1 + \mathbf{B}_1 \cdot \mathbf{D}_2$	
	Substitute equation (3) & (4) in equation (2) $I_S = C_1 (A_2.V_R + B_2.I_R) + D_1 (C_2.V_R + D_2.I_R)$	
	$= C_1 A_2 . V_R + C_1 . B_2 . I_R + D_1 . C_2 . V_R + D_1 . D_2 . I_R$	
	Comparing with GCE (2)	
	$C = C_1.A_2 + D_1.C_2$	$1^{1/2}M$
	$\mathbf{D} = \mathbf{C}_1.\mathbf{B}_2 + \mathbf{D}_1.\mathbf{D}_2$	
b) Ans.	Explain the skin effect and proximity effect in transmission lines. Skin effect: The distribution of current throughout the cross section of a conductor is uniform when DC is passing through it. But when AC is flowing through a conductor, the current is non-uniformly distributed over the cross section in a manner that the current density is higher at the surface of the conductor compared to the current density at its	6 M
	conductor is uniform when DC is passing through it. But when AC is flowing through a conductor, the current is non-uniformly distributed over the cross section in a manner that the current density is higher at the surface of the conductor compared to the current density at its center. This phenomenon is called skin effect.	

		WINTER - 2017 EXAMINATION	
Sub	ject: Powe	er System Analysis Subject Code: 17	510
		Cross section of conductor Current concentrating near surface	Skin effect 3M
		 Skin effect depends on factors: Current Permeability of material Frequency Conductor diameter Diameter Material of conductor Proximity effect: When the alternating current is flowing through a conductor alternating magnetic flux is generate surrounding the conductor. This magnetic flux associates with the neighboring conductor and generate circulating currents. This circulating currents increases resistance of conductor. This phenomenon is called as, "proximity effect". 	
		 Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material 	Proximit y effect 3M
2.	a) Ans.	Attempt any two of the following: i) Define generalized circuit and generalized circuit constants. Generalized Circuit: An passive, linear, bilateral network with two port terminals is known as generalized circuit. A transmission line is a 2 port network, two input terminals where power enters & two output terminals where power leaves the network.	16 4M

WINTER - 2017 EXAMINATION Subject: Power System Analysis Subject Code: 17510			
	$\begin{array}{c c} T_{S} \rightarrow & & \\ \hline & & \\ \hline & & \\ \hline & & \\ V_{S} \rightarrow & \\ \hline & & \\ \hline \\ \hline$	Generali zed circuit 2M	
	For Generalized circuit, Generalized Equations can be written as but $V_S = AV_R + BI_R$ $I_S = CV_R + DI_R$ Generalized Circuit Constant: 1) $A = \frac{VS}{VR}$; $I_R = 0$ It is the ratio of the voltage impressed at the sending end to the voltage at the receiving end when the receiving end is open circuited. It is a dimension less quantity. 2) $B = \frac{VS}{IR}$; $V_R = 0$ It is the volt impressed at the sending end to current of receiving end when receiving end is short circuited. It is known as Transfer impedance. Its unit is in ohms. 3) $C = \frac{IS}{VR}$; $I_R = 0$ It is defined as the ratio sending end current to the receiving end voltage when receiving end is open circuited. It is known as Transfer admittance and its unit mho. 4) $D = \frac{IS}{IR}$; $V_R = 0$ It is the ratio of amperes impressed at the sending end to the ampere at the amperiation of the preservation of the receiving end to the ampere	Generali zed circuit constant 2M	
	at the receiving end when the receiving end is short circuited. It is a pare quantity.	43.4	
Ans.	 ii) Write the advantages of circle diagram. Following are the advantages of circle diagram: Simple method to represent transmission line. Easy to understand parameters of line. Maximum power transferred can by easily determined. The transmission line loss can be determined. Less steps for calculation or analytical solution. Rating of compensating equipment can be directly determined. The torque angle δ can be determined. 	4M Any 4 advanta ges 1M each	

MODEL ANSWER

WINTER -	2017	EXAMIN	ATION
	4 01/		

Subject Code:

	$D_{ab} = D_{bc} = D_{C'b'} = D_{b'a'} = \sqrt{4^2 + 0.75^2}$	
	= 4.06mt	
	$D_{aa'} = D_{cc'} = \sqrt{6^2 + 7.5^2} = 10.96111$ $D_{aa'} = 4\sqrt{(0.16 \times 4.06)^2} = \sqrt{0.16 \times 4.06} = 6.00m$	
	$D_{\text{mab}} = 4\sqrt{(9.10 \times 4.06)^2} = \sqrt{9.10 \times 4.00} = 0.09\text{m}$	
	$D_{mbc} = 4\sqrt{(9.10 \times 4.00)^2} = \sqrt{9.10 \times 4.00} = 0.0911$	2M
	$D_{\text{mac}} = 4\sqrt{(0 \times 7.5)^2} = \sqrt{0 \times 7.5} = 7.74\text{m}$	2111
	$D_{\rm m} = 3\sqrt{D_{\rm mab}} \cdot D_{\rm mbc} \cdot D_{\rm mac}$ - $3\sqrt{6.09 \times 6.09 \times 7.74}$	
	$= 5\sqrt{0.09} \times 0.09 \times 7.74$ = 6.59mt	
	$D_{sa} = \sqrt{9.85 \text{ X } 10^{-3} \text{X } 10.96} = 0.328 \text{m}$	
	$D_{sa} = D_{sc} = 0.328m$	
	$D_{\rm sb} = \sqrt{9.85} X 10^{-3} X 9 = 0.297 {\rm m}$	
	Equivalent $D_{c} = 2 \sqrt{D - D}$	2M
	Equivalent $DS = 5\sqrt{D_{sa} \cdot D_{sb} \cdot D_{sc}}$ = $2\sqrt{0.229 \times 0.207}$	<i>1M</i>
	$= 3\sqrt{0.326} \times 0.297$ $\therefore D_{e} = 0.317m$	
	5	
	\therefore Inductance = 2 X 10 ⁻⁷ log _e $\frac{D_m}{D_m}$	
	Ds	
	$= 2 \times 10^{-7} \log_{e} \frac{6.59}{0.217}$	
	- 0.317	1M
	$= 6.06 \text{ X } 10^{-7} \text{ H/mt/ph}$	
	$-6.06 \times 10^{-7} \text{ H/mt/mb}$	
c)	A 3ϕ 132 KV overhead line delivers 50 MVA at 132 KV and	8M
C)	power factor 0.8 lagging at its receiving end. The constants of the	0111
	line are A = 0.98 $\angle 3^{\circ}$ and B = 110 $\angle 75^{\circ} \Omega$ /phase. Find	
	 i) Sending end voltage and power angle. ii) Sending and active and reactive neuron 	
	ii) Capacity of static compensation equipment at the receiving	
	end to reduce the sending end voltage to 140 KV for the same	
	load.	
Ans.	i) Sending end voltage and power angle.	
	Receiving End current	

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

$I_{R} = \frac{MVA \ X \ 10^{-6}}{\sqrt{3}X \ V_{R}X \ 10^{3}}$	
$=\frac{50 \times 10^{-6}}{\sqrt{3} \times 132 \times 10^{3}} = 218.69 \text{A } o \angle -36.86$	2M
calculate sending end voltage, $V_s = A.V_R + B.V_R$	
$= \left[(0.98) \left(\frac{132 \times 10^3}{\sqrt{3}} \angle 0^0 \right) \right] + \left[(110 \angle 75^0) \cdot (218.69 \angle 36.86) \right]$	
$= [74.68 \angle 3^0] + [24.05 \angle 38.14^0] \\= 93.48 + j18.75$	
: $V_s = 95.34 \text{ KV} \ \angle 11.34^0$	
$\therefore V_{s} = 95.34 \text{KV}$ $\delta = 11.34^{0} \text{Power Angle}$	
Convert V _s into line voltage	
$\therefore \mathbf{V}_{\mathrm{s}} = \sqrt{3} \times 95.34$	
$V_s = 165.13 \text{KV} \angle 11.34^0$	
ii) Calculate sending active & reactive power:	
$\mathbf{S}_{s} = \frac{A.V_{s}^{2}}{B} \angle (\mathbf{B}.\alpha) + \frac{V_{s}.V_{R}}{B} \angle (\mathbf{B}-\delta)$	2M
$= \left[\frac{(0.98)(165.13)^2}{110} \angle (75^0 - 3^0)\right] + \left[\frac{165.13 \times 132}{110} \angle (75^0 - 11.34^0)\right]$	
$= [242.93 \angle 72^0] + [198.15 \angle 63.66]$	
= 75.06 + j 231.04 +87.91 j177.57	
= 162.97 + j408.61	

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subj	ject: Powo	er System Analysis Subject Code: 17	510	
		Sending end Active power = 162.97MW Sending end Reactive power = 408.61MVAR		
		iii) Calculate capacity of static equipment:	2M	,
		$Q_{s} = \frac{A.V_{s}^{2}}{B} \sin (B - \alpha) + \frac{V_{s}.V_{R}}{B} \sin (B - \delta)$		
		$= \left[\frac{(0.98)(140)^2}{110}\sin(72)\right] - \left[\frac{140 \times 132}{110}\sin(75 - 11.34)\right]$		
		= [174.61 X 0.95] – [168 X 0.89]		
		= 165.87 - 149.52		
		= 16.35 MVAR		
		$Q_{\rm R} = 50 \ {\rm X} \sin (36.86)$		
		= 30 MVAR \therefore capacity of static equipment, = $Q_S - Q_R$		
		= 16.35 - 30		
		= -28.65 MVAR	2M	,
3.		Attempt any four of the following:	16	
	a)	Write the role of power system engineer in PS.	4 M	[
		(Note: Any other relevant points shall be consider)		
	Ans.	i. On the planning side he or she has to make decisions on how		
		much electricity to generate ii. For operation of the power system he has to plan for concretion of	1	1
		electricity where when and by using what fuel	noin	4 ts
		iii. He has to plan for expansion of the existing grid system and also	1M ea	ich
		for new grid system.		
		iv. He coordinated operation of a vast and complex power network,		
		so as to achieve a high degree of economy and reliability.		
		v. He has to be involved in constructional task of great magnitude both in generation and transmission.		

MODEL ANSWER

	WINTER - 2017 EXAMINATION	
Subject: Pow	er System Analysis Subject Code: 17	510
	vi. He has to solve problem of power shortages./ outage of linevii. He has to evolve strategies for energy conservation and load management.viii. For solving the power system problems he has to update with new	
	technology method.	
b)	Write the steps for drawing a sending end circle diagram with neat diagram	4M
Ans.	 i. Step-1: Draw the X-Y plane in which plane X represents the active power (MW) & axis-y-represents the Reactive power (MVA). With proper scale. ii. Step-2: The centre of sending end circle is located at the tip of phasor D/B 1V_S ²<β - α drawing OC_S from positive MW axis. OR Locate X and Y coordinates of the centre are D/B 1V_S ²Cos (β - α) and D/B 1V_S ² Sin (β - α) and mark the point Cs. Join OCs. iii. Step-3: Radius = V_S V_R / B Draw the Curve with the radius of sending end circle from centre Cs to the scale. iv. Step-4: Locate point Lon X axis such that OL represents Ps to the scale. Draw perpendicular at L to X axis which cuts the circle at	Steps 2M
	point at N. Join NCs. N is the operating point of the system. Step-5: Complete the triangle ONL which represents power triangle at sending end.	
	(B-a) Tes L MSI IISI N dis N dis N MW	Diagram 2M
c)	A 400 KV 3-phase bundled conductor line with two sub- conductors per phase has a horizontal configuration as shown in Fig.2. The radius of each sub-conductor is 1.6 cm. Find the inductance per phase per km of the line.	4M

MODEL ANSWER

WINTER -	2017	EXAMINAT	'ION
			1011

Subject: Power System Analysis

Subject Code:

	$D_{eq} = 3\sqrt{D_{ab} D_{bc} D_{ac}}$ $= 3\sqrt{11.07 \times 11.07 \times 22.00}$	
	$= 3\sqrt{11.97} \times 11.97 \times 23.99$ = 15.09m	^{1/2} M
	$L = 2 X 10^{-7} \log_e \frac{D_{eq}}{D_s}$	
	$= 2 \text{ X } 10^{-7} \log_{e} \frac{15.09}{0.075}$	
	= 1.06MH/km	^{1/2} M
d)	A 3ϕ 132 KV line delivers 40 MVA at 0.8 p.f. lagging. The line constants are A = D = 0.98 $\angle 3^0$, B = 110 $\angle 75^0$, C = 5 X $10^{-4} \angle 88^0$. Find the capacity of phase modifier at full load. V _s = 140 KV, V _r = 132 KV.	4M
Ans.	$ cos \phi 0.8 \\ sin \phi = 0.6 $	^{1/2} M
	$P_{R} = 40 X 0.8 = 32MW$	$^{1/2}M$
	$Q_R = 40 \times 0.6 = 24 \text{ MVAR}$	$^{1/2}M$
	$P_{\rm R} = \frac{V_{\rm s}V_{\rm R}}{B}\cos(\beta - \delta) - \frac{AV_{R^2}}{B}\cos(\beta - \alpha)$	^{1/2} M
	$=\frac{140 \times 132}{110}\cos(\beta - \delta) - \frac{0.98 \times 132^2}{110}\cos(75 - 3)$	
	$32 = 168 \cos(\beta - \delta) - 115.23 \cos 72^0$	
	$32 = 168\cos(\beta - \delta) - 35.60^{\circ}$	
	$\cos(\beta - \delta) = 0.402$	
	$\beta - \delta = \cos^{-1} \left(0.402 \right)$	

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

	$\beta - \delta = 66.296$	$^{1/2}M$
	$Q_{R} = \frac{V_{s}V_{R}}{B}\sin(\beta - \delta) - \frac{AV_{R^{2}}}{B}\sin(\beta - \alpha)$ $= \frac{140 \times 132}{110}\sin(66.296) - \frac{0.98 \times 132^{2}}{110}\sin(75 - 3)$	^{1/2} M
	= 153.826 - 109.59	
	$Q_{R} = 44.236 \text{ MVAR}$	^{1/2} M
	Capacity of phase modifier = $44.236 - 24$ = 20.236 MVAR	^{1/2} M
e)	Explain the effect of earth field on transmission line capacitance.	4 M
Ans.	As earth is also a perfect conductor its electric field affect the outside electric field i.e. capacitance of the line conductor. For example consider a circuit consisting single over head conductor with a return path through the earth. Assume the earth as a perfectly	Explana
	with a return path through the earth. Assume the earth as a perfective horizontal sheet of infinite extent which therefore acts like an equipotential surface. Now the earth has a charge equal in magnitude and opposite to that of the conductor. Hence potential difference exists between the conductor and the earth. And the electric flux is perpendicular to the earth's equipotential surface. Since the surface is assumed to be a perfect conductor. Imagine a fictitious conductor of the same size and shape as the over head conductor lying directly below the original conductor at a distance equal to twice the distance of the conductor above the plane of the earth by a distance equal to the distance of the overhead conductor. Suppose the earth is removed and a charge equal and opposite to that on the overhead conductor is assumed on the fictitious conductor. Now the plane midway between the original conductor and the same position as that of the earth. Now the flux between the overhead conductor and this equipotential surface is the same as that which existed between the conductor and the earth. Thus for the calculation of the capacitance, the earth may be replaced by a conductor at a	tion 4M

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

WINTER - 2017 EXAMINATION			
Subj	ect: Powe	er System Analysis Subject Code: 1	7510
		$C_{ab} = \frac{q_a}{V_{ab}} = \frac{\pi k}{\ln(\frac{D}{(r_a r_b)^{1/2}})} \frac{F}{m} \text{ length of line}$	1M
		OR	
		$C_{ab} = \frac{0.0121}{\ln(\frac{D}{(r_a r_b)^{1/2}})} \frac{\mu F}{m}$	
		If $r_a = r_b = r$ then $C_{ab} = \frac{0.0121}{\ln(\frac{D}{r})} \frac{\mu F}{km}$	1M
	b) Ans.	A 275 KV, 3ϕ line has the following line parameters, $A = 0.93$ $\angle 1.5^{0}$, $B = 115 \angle 77^{0}$. If the receiving end voltage is 275 KV, determine the sending end voltage if the load of 250 MW at 0.85 lagging PF is being delivered at the receiving end. given: $V_{R} = 275KV$, $A = 0.93 \angle 1.5^{\circ}$, $B = 115 \angle 77^{\circ}$	4M
		Power delivered – PR = 250 Mw, 0.85 lag	
		$load = \sqrt{3}V_R I_R \cos \phi_R = 250 \times 10^6 =$	
		$= \sqrt{3}x \ 275 \times 10^3 \times I_R \times 0.85$	
		$\therefore I_R = 617.49Amp$	<i>1M</i>
		$\phi_R = \cos^{-1} 0.85 = 31.79$	<i>1M</i>
		$V_S = AV_R + BI_R$	
		$V_S = 0.93 \angle 1.5 \times \frac{275 \times 10^3}{\sqrt{3}} \angle 0 + 115 \angle 77 \times 617.49 \angle -31.79$	1M
		$V_s = 204948.51 \angle -15.35^0$	
		V_s (phase value) = 204.948KV	
		V_s (line value) = 342.31KV	<i>1M</i>
	c)	Draw the equivalent circuit diagram of i) Alternator ii) Transformer	4M
	Ans.		

WINTER - 2017 EXAMINATION			
Sub	ject: Pow	er System Analysis Subject Code: 17	510
	d)	State the expression for complex power at receiving end of transmission line. Derive the condition for max. power at receiving end.	4M
	Ans.	The expression for complex power at receiving end of transmission line $P_R = \frac{V_S V_R}{B} \cos(\beta - \delta) - \frac{A V_R^2}{B} \cos(\beta - \alpha)$ Where V _S , V _R - sending end and receive end voltages $A \angle \alpha$, $B \angle \beta$ - GCC of line δ - load angle	1M
		Condition for maximum power at receiving end can be obtained by Differentiate above equation with respect to variable load (δ) and equating it to zero. $\frac{dP_R}{d\delta} = -\frac{V_S V_R}{B} \sin(\beta - \delta) + 0 = 0$	1M
		$\frac{V_{\rm S} V_{\rm R}}{B} \sin(\beta - \delta) = 0$ $\sin(\beta - \delta) = 0$ $(\beta - \delta) = 0$	1M
		$\beta = \delta$	<i>1M</i>
4.	B) a) Ans.	Attempt any one of the following: Explain how generalized circuit constants are measured. Measurement of Generalized Circuit Constants can be done by conducting Open circuit and short circuit test. If a transmission line is already erected, the constants can be measured by conducting the open circuit and short circuit test on the two ends of the line. Consider a transmission line and determine the impedances which are complex quantities. The magnitudes are obtained by ratio of the voltages and currents and the angle with the help of wattmeter reading. The connection diagram are shown below	6 6M 1M

MODEL ANSWER

Subject: Power System Analysis

equations become $V_R = DV_s + BI_s \times (-I_R) = -(V_s + A(-I_s))$	
$\therefore -I_R = -CV_s - AI_s$	
$I_R = \mathbf{C}V_s + AI_s$	
From O. C. test, $I_s = O$	
$Z_{ro} = \frac{V_R}{I_R} = \frac{DV_s}{CV_s} = \frac{D}{C}$	
-receving end impedance with sending end open clcted.	- 1M
From S.C. test, $V_s = O$	
$Z_{rs} = \frac{V_R}{I_R} = \frac{BI_s}{AI_s} = \frac{B}{A}$	
-receivng end impedance with sending end s.ced Now, $Z_{ro} - Z_{rs} = \frac{D}{C} - \frac{B}{A} = \frac{AD - BC}{AC}$	
$=\frac{1}{AC}[ASAD - BC = 1]$	
Now, $\frac{Z_{ro} - Z_{rs}}{Z_{so}} = \frac{1}{AC} \cdot \frac{C}{A} = \frac{1}{A^2}$	
$\therefore \mathbf{A} = \sqrt{\frac{Z_{so}}{Z_{ro} - Z_{rs}}} $ (a)	
or $\mathbf{B} = \mathbf{A}\mathbf{Z}_{rs} = \mathbf{Z}_{rs} \sqrt{\frac{\mathbf{Z}_{so}}{\mathbf{Z}_{ro} - \mathbf{Z}_{rs}}}$ (b)	1M
$Z_{so} = \frac{A}{C}$ $\therefore \mathbf{C} = \frac{A}{Z_{so}} = \frac{1}{Z_{so}} \sqrt{\frac{Z_{so}}{Z_{ro} - Z_{rs}}} \qquad(\mathbf{c})$	
$\therefore \mathbf{D} = \mathbf{C} \cdot \mathbf{Z}_{ro} = \frac{\mathbf{Z}_{ro}}{\mathbf{Z}_{so}} \sqrt{\frac{\mathbf{Z}_{so}}{\mathbf{Z}_{ro} - \mathbf{Z}_{rs}}}$	

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

	$= Z_{ro} \sqrt{\frac{1}{(Z_{ro} - Z_{rs})Z_{so}}}$ (d)	
	If $Z_{ro} = Z_{so}$ we get A = D for symmetric network	
b)	Explain the concept self G.M.D. and mutual G.M.D. in	6M
	inductance for transmission line.	
Ans.	Expression:	
	$\bigcirc^{\mathbf{a}}$ $\bigcirc^{\mathbf{a}^1}$	
	с О _в О ^в	1M
	$\begin{array}{c} \text{Cond } X \\ m = 3 \end{array} \qquad \qquad \begin{array}{c} \text{Cond } Y \\ n = 2 \end{array}$	
	$D_m = {}^{mn}\sqrt{mn \text{ terms}}$	
	$= \sqrt[6]{(D_{aa'} \ D_{ab'}) (D_{ba'} \ D_{bb'}) (D_{ca'} \ D_{cb'})}$	
	$D_{sx} = m^2 \sqrt{m^2 \text{ terms}}$	<i>1M</i>
	$= \sqrt[9]{(D_{ab} D_{aa} D_{ac}) (D_{ba} D_{bb} D_{bc}) (D_{ca} D_{cb} D_{cc})}$	
	$D_{sy} = \sqrt[4]{(D_{a'a'} \ D_{a'b'}) (D_{b'b'} \ D_{b'a'})}$	1M
	$L_A = 2 \times 10^{-7} In \frac{Dm}{Ds} H/m$	
	Ds GMR: Self GMD: The denominator of the argument of the logarithm in above Equation is the n^2 th root of n^2 product terms (n sets of n product terms each). Each set of n product term pertains to a filament and consist of r' (D _{ii}) for that filament and (n – 1) distances from that filament to every	1M

		WINTER - 2017 EXAMINATION	
Subj	ject: Powe	er System Analysis Subject Code: 1	7510
		other filament in conductor A. The denominator is defined as the self- geometric mean distance (self GMD) of conductor A, and is abbreviated as D_{sA} . Sometimes, self GMD is also called geometric mean radius. Similarly, DmGMD: Mutual GMD The numerator of the argument of the logarithm in above Equation is the (mn) th root of the 'mn' terms, which are the products of all possible mutual distances from the n filaments of conductor A to m' filaments of conductor B. It is called mutual geometric mean distance(mutual GMD) between conductor A and B and abbreviated as D_{m} .	
5.	a)	Attempt any two of the following: A 132 KV, 50Hz, 3 ϕ transmission line delivers a load of 50 Mw at 0.8 P.F. lagging at the receiving end. The generalized constants of the transmission line are A = 0.85 $\angle 1.6^{\circ}$, B = 100 $\angle 80^{\circ}$, C = 0.0018 $\angle 95^{\circ}$. Find sending end voltage, sending end current and %	16 8M
	Ans.	voltage regulation. Use nominal π method. $given: V_R = 132KV, A = 0.85 \ge 1.6, B = 100 \ge 80$ load = 50Mw, 0.8lag	
		$load = \sqrt{3}V_R I_R \cos \phi_R = 50 \times 10^6$ $= \sqrt{3} X 132 \times 10^3 \times I_R \times 0.8$	
		$\therefore I_R = 273.3666 Amp$ $\phi_R = \cos^{-1} 0.8 = 36.86$ $V_S = AV_R + BI_{R}$ $= 0.85 \angle 1.6 \times 132 \times 10^3 \angle 0 + 100 \angle 80$ $\times 273.366 \angle - 36.86$	1M
		$V_s = 133.89 \angle 9.38 \ KV$ $I_S = CV_R + DI_R \qquad 1M$	2М
		$= 0.0018 \angle 95 \times 132 \times 10^{3} \angle 0 + 0.85 \angle 1.6 \times 273.3666 \angle -36.86$	
		= 197.70∠31.25)	2M
		For nominal π circuit, V_{RNL} is V _S /A	<i>1M</i>

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

	Voltage regulation $= \frac{\frac{V_s}{A}V_{RFL}}{V_{RFL}} \times 100$ $= \frac{\frac{133.89}{0.85} - 132}{122} \times 100 = 19.33\%$	1M 1M
 b)	Explain why reactive power compensation is necessary. Explain	8M
,	working of synchronous condenser in this.	
Ans.	Need of Reactive power compensation:	
	Power system is well designed when it gives good quality of reliable supply i.e variation at receiving end is within limit (+/- 5 %). If variation is more performance of equipment is affected	
	Variation in Voltage indicates unbalance in reactive power generated	<i>4M</i>
	Q_s & reactive power consumed by load Q_r	/-
	If $Q_s > Q_r - V_r$ increases	
	If $Q_s < Q_r - V_r$ decreases	
	If $Q_s = Q_r - V_r$ flat cha	
	So to maintain balance in $Q_s \& Q_r$ Reactive power compensation is required.	
	Synchronous condenser any 4 points 1 mark each	
	• It is synchronous motor operating at no load with over excitation	
	• It is used for compensating large amount of reactive power	Any 4
	It is used in load dispatch center	points
	• It is dynamic/ rotating compensation equipment	IM each
	It is costly & requires maintenance	
	OR	

MODEL ANSWER

Subject: Power System Analysis

Subject Code:

MODEL ANSWER

WINTER - 2017 EXAMINATION

17510 Subject Code:

MODEL ANSWER

Subject: Power System Analysis

Subject Code:

Տութ	iact: Pau	WINTER - 2017 EXAMINATION	N Subject Code: 1	7510
Sun				
		= 19.60m		2M
		$D_{sa} = 4\sqrt{(DaaDaa' X Da' aDa' a')}$		
		$=4\sqrt{(\text{Daa X Daa'})} = \sqrt{(\text{Ds X Daa'})}$		
		$= \sqrt{(1.0744 \text{ X } 10^{-2} \text{X 3 X D})}$		
		$= \sqrt{(1.0744 \text{ X } 10^{-2} \text{ X } 3 \text{ X } 7)}$		
		= 0.474 m		
		$D_{sb} = \sqrt{D_{bb} X D_{bb'}} = 0.474 m$		
		$D_{sc} = \sqrt{D_{cc} X D_{cc'}} = 0.474$		1M
		$D_s = 3\sqrt{D_{sa} D_{sb} D_{sc}} = 0.474m$		
		Inductance = 2 X $10^{-7} \log_e \frac{D_m}{D_s}$		2M
		$= 2 \text{ X } 10^{-7} \log_{e} \left(\frac{19.60}{0.474} \right)$		
		$= 7.44 \text{ X } 10^{-7} \text{H/m}$		
		= 0.744mH km		
		$X_{\rm L} = 2\pi f L = 2\pi X 50 X 0.744$		1M
		= 233.734 m $\Omega/km/ph$		
		$\therefore \text{Susceptance} = \frac{1}{X_{\text{L}}} = 4.278 \text{ siemens/km/ph}$		1M
6.	a)	Attempt any four of the following: A 50Hz, 3ϕ , 275KV, 400 km x mission line parameters: R = 0.035 Ω /km/ph, L = 1.1 mH/ F/km/ph. If the line is supplied at 275 KV, do rating of a shunt reactor having negligible loss	has the following km/ph, C = 0.012μ etermine the MVA sses, The receiving	16 4M

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis

Subject Code:

	end volt. Is 275 KV when line is delivering no load. Use nominal	
	π method.	
Ans.	$F=50Hz, V_s=275kv, L=300km, V_R=275kv,$	
	$R=0.0035\Omega/km/ph, L=1.1mH/km/ph=1.1X10^{-3}H/km/ph,$	
	$C=0.012 \mu F/km/ph=0.012 X 10^{-6} F/km/ph$	
	At no load condition i.ePr=0MVA Rating of shunt reactor?	
	Use nominal π	
	$A = 1 + \frac{YZ}{Z}$ AND $B = Z$	
	$A = 1 + \frac{1}{2} \text{ AND } B = 2$	
	$Z = R + jX_L = \sqrt{R^2 + X_L^2}$	
	$X_L = 2\pi FL = 2 \times \pi \times 50 \times 1.1 \times 10^{-3} \times 300 = 2.072\Omega$	
	$R = 0.5 \times 300 = 1.05\Omega$	
	Z = 1.05 + 2.072 = 2.322/63.120	114
	$V = iwc = i \times 2\pi \times 50 \times 0.012 \times 10^{-6} \times 300$	1 171
	$- 0.0011304 \times 10^{-6} - i0.0011304 - 0.0011304 / 90^{0}$	
	= 0.0011304 × 10 = J0.0011304 = 0.0011304230	
	$\therefore A = 1 + (0.0011304 \angle 90, (2.322 \angle 63.12))$	
	$=1+\frac{0.0020242133.12}{2.10}$	
	$= 1 + 0.00131 \angle 153.12 = 1 + (-0.001168 + j0.000592)$	
	= 0.9988 + j0.000592	
	$= 0.9988 \angle 0.0339^{\circ}$	<i>1M</i>
	P = 7 = 2222462120	
	$B = Z = Z.322Z03.12\Omega^2$	
	$\cdot 4 = 0.9988 / \alpha = 0.0339 / \beta = 2.322 / \beta = 63.12$	
	$\therefore A = 0.0002\mu = 0.00002\mu = 2.00002\mu = 0.0000000000000000000000000000000000$	
	$\therefore P_r = \frac{ V_S V_r }{ S } \cos(\beta - \delta) - \frac{ A V_r }{ S } \cos(\beta - \alpha)$	
	At no load Pr $_{=0}$	
	$\therefore 0 = \frac{2/5 \times 2/5}{\cos(\beta - \delta)} - \frac{0.9988 \times 2/5}{\cos(63.12 - 0.0339)}$	
	2.322 2.322 2.322	
	$(\beta - \delta) = 63.12^{0}$	
	(p - 0) = 0.12	
	Now substituting in equation for $Q_{r,}$	
	$ V_s V_r $ $ A V_r ^2$	
	$\therefore Q_r = \frac{ B }{ B } \sin(\beta - \delta) - \frac{ B }{ B } \sin(\beta - \alpha)$	<i>1M</i>

MODEL ANSWER

Subject Code: 17510

MODEL ANSWER

Subject: Power System Analysis

Subject Code:

	$\therefore L_{ax} = \frac{L_a + L_b}{L_a}$	
	$\frac{2}{\sqrt{\text{Da} a' \cdot \text{Da} b' \cdot \text{Db} b' \cdot \text{Db} a'}}$	
	$= 2 \times 10^{\circ} \log_{e} \sqrt{\text{Da}a' \cdot \text{Da}b' \cdot \text{Dbb}}$	
	$\therefore L_{x} = \frac{1}{2}L_{ax}$	
	$7 \qquad 4\sqrt{Daa'} Dab' Dbb' Dba'$	
	$= 2 \text{ X } 10^{-7} \log_{\text{e}} \frac{1 \text{ V Data } \text{ Data } $	
	$= 2 \times 10^{-7}$	
	$\log_{e} \frac{D_{m}}{Ds_{\chi}} \dots \dots \dots \dots \frac{H}{mt}$	
	$1111_y L_y = 2 \times 10^{-1}$	
	$^{7}\log_{e\frac{D_{m}}{Ds_{y}}}\dots\dots\dots H/_{mt}$	
	where $Ds_{y=4\sqrt{Da'a'.Db'b'.Da'b'.Db'a'}}$	
	$\therefore L_{loop}$ - Total inductance of 1 ϕ line	
	$= L_x + L_y$	
	$= 2 \times 10^{-7} \log_e \frac{D_m}{D_c} + \log_e \frac{D_m}{D_c}$	
	$= 2 \times 10^{-7} \log_{Dm^2} $	
	$e \frac{1}{\text{Ds } \chi . \text{Ds } y}$	
	= 2 X 10 ⁻⁷ log _e $\frac{-m}{Ds^2}$ where $D_s = Ds_x = Ds_y$ for duplex bundelled - 4 X 10 ⁻⁷ log D /D H/mt	
	$= 4 \times 10^{-10} \text{ log}_{e} D_{\text{m}} D_{\text{s}} \dots \dots \dots 11/\text{Int}$	
 d)	$L_{loop} = 4 \times 10^{-7} \log_e D_m / D_s \dots H / mt$ Write power flow equation in the terms of sending end and	4M
	receiving end voltage.	
Ans.	Power flow equation at the receiving end is given by	
		1 <i>M</i>

г

WINTER -	2017	EXAN	ЛІМА	TION

Subj	ect: Powe	er System Analysis	Subject Code:	17510
		$S_{R} = \frac{V_{R}V_{S}}{B} \angle (\beta - \delta) - \frac{AV_{R}^{2}}{B} \angle (\beta - \alpha)$		^{1/2} M
		$P_{\rm R} = \frac{V_{\rm R}V_{\rm S}}{B}\cos\left(\beta - \delta\right) - \frac{AV_{\rm R}^2}{B}\cos(\beta - \infty)$		^{1/2} M
		$Q_{\rm R} = \frac{V_{\rm R}V_{\rm S}}{B}Sin(\beta - \delta) - \frac{AV_{\rm R}^2}{B}sin(\beta - \alpha)$		1M
		Power flow equation at the sending end is given b $S_{S} = \frac{AV_{s}^{2}}{B} \angle (\beta - \alpha) - \frac{V_{s}V_{R}}{B} \angle (\beta + \delta)$	у	^{1/2} M
		$P_{\rm S} = \frac{AV_{\rm S}^2}{B} cos(\beta - \propto) - \frac{V_{\rm s}V_{\rm R}}{B} cos(\beta + \delta)$		^{1/2} M
		$Q_{\rm S} = \frac{AV_{\rm s}^2}{B} sin(\beta - \infty) - \frac{V_{\rm s}V_{\rm R}}{B} sin(\beta + \delta)$		
		Where P_R = Real or active power in MW, Q_R = Reactive	power in MVAR	at
		P_s = Real or active power in MW, Q_s = Reactive p sending end	ower in MVAR	at
		V_s = Sending end voltage per phase in KV V_R = Receiving end voltage per phase in KV δ = Power angle		
		A, B = Generalized Circuit Constant		
	e)	A medium transmission line has series impedance is $(20+j52) \Omega$ and shunt admittance is $316X10^{-6}$ S/ph. Calculate A, B, C, D		$ \begin{array}{c c} \Omega & 4M \\ D & \end{array} $
	Ang	constants of the line assuming nominal '1' circ $7 = 20 \pm 1520$	uit.	
	Ans.	Z = 20 + J 5202 $V = 316 \times 10^{-6}$ S		
		for NominalT – circuit		
		$A = D = 1 + \frac{YZ}{2}, B = Z\left(1 + \frac{yZ}{2}\right).$	C = Y	
		$A = D = \frac{1+yz}{1-yz} = 1 + \left[\frac{(316 \times 10^{-6})(20+j\ 52)}{1-yz}\right]$		
		$A = 1 + \frac{8.80 \angle 68.96}{2}$		
		$A = 1 + 4.108 \times 10^{-3}$		

MODEL ANSWER

WINTER - 2017 EXAMINATION

Subject: Power System Analysis	Subject Code: 17510	
A =	$1.00 \angle 0.23 = D \qquad \qquad 2M$	
C = Y =	$= 316 \times 10^{-6} mhos \qquad IM$	
$B = Z\left(1 + \frac{yz}{4}\right) = 316 \times$	$10^{-6} \left[1 + \frac{(316 \times 10^{-6})(20 + j\ 52)}{4} \right]$	
= 8.60 ×	$10^{-4} \angle 48.92 siemens$ IM	