22640

	3242 Ho		/	70	Marks	Seat	No.					
Instructions – (1)				(1)	All Questions are Compulsory.							
				(2)	Answer each	next main	Questio	on on a	a new	pa	ge.	
				(3)	Illustrate you necessary.	ir answers v	with nea	at sketc	ches v	vher	ever	
				(4)	Figures to the	e right indi	cate fu	ll mark	s.			
				(5)	Assume suita	able data, if	necess	ary.				
				(6)	Mobile Phon Communicati Examination	on devices						
				(7)	Preferably, w	vrite answers	s in sec	quential	orde	r.	Mar	ks
1.		Atte	mpt	any	<u>FIVE</u> of the	e following:						10
	a)	State	the	ben	efits of auton	nation with	respect	to :				
i) Pro			Pro	duct	luct quality							
		ii)	Pro	ducti	vity							
		iii)	Pro	duct	cost and							
iv) Manpov			npow	ver utilization								
response time					between PLC and DCS system on the basis of e and scalability.							
					ection criteria for discrete input module and at module.							

- d) Enlist the different PLC programming languages.
- e) Compare retentive and non retentive on delay timer instruction. (any two points)
- f) Enlist different types of SCADA.
- g) Define :
 - i) Tags and
 - ii) Items w.r.t. SCADA

22640

- a) Draw the architecture of PLC and explain functions of the input module, output module, CPU and power supply unit.
- b) State the sourcing and sinking concept in DC input module of PLC with neat block schematic.
- c) Draw the functional block diagram of up counter. Also draw its word format. Explain the function of CV and orbits.
- d) Describe the steps involve in interfacing the PLC based application with SCADA system.

3. Attempt any THREE of the following:

- a) Describe the discrete AC input module with neat wiring diagram.
- b) Explain with suitable example the circular nature of limit instruction used in PLC.
- c) Write a ladder logic program for converting 400°C to °Farhrenheit use °F = $(9/5 \times ^{\circ}C) + 32$.
- d) Explain the significance of OPC in SCADA based applications.

4. Attempt any <u>THREE</u> of the following:

- a) Describe the redundancy in PLC system.
- b) Draw the block diagram of analog output module and explain function of each block.
- c) List the comparison instructions used in PLC ladder logic programming language. Draw the functional diagram of any two instructions.
- d) Compare PLC and SCADA on any four points.
- e) Describe the steps in creating SCADA screen for simple object.

12

12

22640

5. Attempt any <u>TWO</u> of the following:

- a) Explain the single point relay output module with neat diagram. Also draw the wiring diagram for the system used in an automation industry where 120 V_{AC} input is to be used to control the DC motor connected with the PLC using combination i/o module.
- b) Write a ladder logic program using single timer instruction for following conditions :
 - i) When START PB is pressed solenoid valve A will be ON.
 - ii) After 5 seconds solenoid valve B should be ON. When B is ON, after 5 seconds solenoid C should be ON.
 - iii) After 15 seconds solenoid D should be ON.
 - iv) All solenoids should be OFF after pressing STOP PB.
 - v) Mention the input addresses required for above operation.
 - vi) Mention the output addresses required for above operation.
- c) Describe with neat block diagram simple water distribution system using SCADA. Also draw ladder logic diagram used for simple water distribution system.

6. Attempt any TWO of the following:

- a) Write a ladder logic program for motor sequence control for following conditions :
 - i) Motor 1 starts as soon as start switch is ON.
 - ii) After 10 seconds motor 1 goes OFF and motor 2 starts.
 - iii) After 5 seconds motor 2 goes OFF and motor 3 starts.
 - iv) After 5 seconds motor 3 goes OFF and motor 4 starts.
 - v) After 10 seconds motor 4 goes OFF and motor 1 starts.
 - vi) Cycle should repeat until stop switch is pressed.
- b) Write a ladder logic program for stepper motor control to rotate the motor in clockwise direction continuously until the stop push button is pressed. Also explain the operation.
- c) Draw block diagram of SCADA system and explain its parts. Enlist any four benefits of SCADA in automation industry.

12

12