2	3242											
3	Ho	urs /	70	Marks	Seat	No.						
	Instru	ructions – (1) All Questions are Compulsory.										
		(2) Answer each next main Question on a new page.										
			(3)	Illustrate your answers with neat sketches wherever necessary.								
			(4)	Figures to the right indicate full marks.								
			(5)	Assume suitable data, if necessary.								
			(6)	Use of Non-programmable Electronic Pocket Calculator is permissible.								
			(7)	Mobile Phone Communication Examination 1	obile Phone, Pager and any other Electronic ommunication devices are not permissible in xamination Hall.							
											Μ	arks
1.		Attempt	t any	<u>FIVE</u> of the	following	:						10
	a)	State Perpendicular axis theorem.										
	b)	Define Elastic limit.										
	c)	What is Poisson's ratio.										
	d)	State the different types of beam with sketch.										
	e)	State the used in	e flex it.	ural formula a	and write t	the mea	aning	g of	syı	mbo	ls	

- f) Define slenderness ratio and effective length of column.
- g) Calculate polar MI of solid circular shaft having diameter 'D'.

2. Attempt any THREE of the following:

- a) A RCC column 450 mm dia. is reinforced with 6 bars of 16 mm diameter. Find the safe load if $\sigma_c = 5 \text{ N/mm}^2$ and $\sigma_s = 125 \text{ N/mm}^2$, modular ratio is 18.
- b) Define shear force and bending moment and give its sign convention.
- c) A timber beam 150 mm wide 300 mm deep simply supported having span 4 m, it carry UDL - 15 kN/m over entire span. Find maximum bending stress induced in section. Draw stress diagram.
- d) Calculate slenderness ratio for which Euler's crippling load and Rankine's failure load is of same magnitude if

E = 200 mpa, $\alpha = 1/7500$, $\sigma_c = 300$ N/mm².

3. Attempt any <u>THREE</u> of the following:

- a) Calculate the radius of gyration of a steel pipe having external diameter 22 mm and internal diameter 16 mm.
- b) Determine the total elongation of the bar shown in Fig. No. 01. Take $E = 2 \times 10^5 \text{ N/mm}^2$.

Fig. No. 01.

c) For a given material, E = 110 Gpa, G = 43 Gpa, find bulk modulus and Poission ratio.

12

d) Determine bending moments at 1.5 m from fixed end for beam shown in Fig. No. 02.

Fig. No. 02.

4. Attempt any THREE of the following:

a) Calculate the bending moment at 1 m from the fixed end for cantilever beam loaded as shown in Fig. No. 03.

- b) A joist of 5 m span has planges 250 mm wide \times 20 mm thick and web 10 mm thick. The overall depth 500 mm. It carry UdL 20 kN/m over entire span. Calculate maximum bending stress induced. Sketch the stress distribution diagram
- c) A copper rod 20 mm ϕ is 500 mm long it subjected to axial pull of 2.4 kN applied suddenly calculate
 - i) Stress induced in rod
 - ii) Elongation
 - iii) Energy stored in rod

d) Calculate I_{XX} of inverted T-section as shown in Fig. No. 04.

Fig. No. 04.

e) A cube of 200 mm side is subjected to a compressive force 3.6 MN on each face. The change in volume found to be 5125 mm³, Find E and K if 1/m = 0.25.

5. Attempt any TWO of the following:

- a) A RCC column 400 × 400 mm is reinforced with 4 bar of 20 mm ϕ determine the stresses induced in steel and concrete if it is subjected to an axial load of 500 kN. Take modulus ratio $\frac{\text{ES}}{\text{EC}}$ = 13.33
- b) In a biaxial stress system the stresses along the two direction are $\sigma_x = 50 \text{ N/mm}^2$ (T) $\sigma_y = 60 \text{ N/mm}^2$ (C), find changes in diamention and volume if X = 200 mm, y = 600 mm, Z = 800 mm.

Take $E = 200 \text{ kN/mm}^2$ and m = 4.

c) Draw S.F.D and B.M.D for a simply supported beam having length 5 m, it carry a point load 20 kN which is acting 3 m from left support, it also carry a moment anticlockwise on point load of 8 kN.m.

[5]

6. Attempt any <u>TWO</u> of the following:

Marks

12

a) Draw SFD abd BMD of a beam is showing in Fig. No. 05.

Fig. No. 05.

- b) A beam rectangular section 200×300 mm it is subjected to shear force of 48 kN. Calculate shear stress at top layer and at a distance of 50 mm, 100 mm, 150 mm from top layer. Draw shear stress distribution.
- c) A column having diameters 200 mm is of length 3 m both end of column are hinged. Find Euler's crippling load.

Take $E = 2 \times 10^5$ MPa.