

Summer – 2016 Examinations <u>Model Answer</u>

Page No: 1 of 25

Important Instructions to examiners:

Subject Code: 17323 (ECN)

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner should assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner should give credit for any equivalent figure/figures drawn.
- 5) Credits to be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept

Subject	Summer – 2016 ExaminationsCode: 17323 (ECN)Model AnswerPage No: 2 of 25	
1	Attempt any ten of the following:	20
1 a)	State the terms instantaneous value and maximum value of an alternating quantity. Ans: Instantaneous value:	
	The value of an alternating quantity at a particular instant is called the instantaneous value of the quantity at that instant. <u>Maximum Value:</u>	1 mark each
	The maximum or peak value attained by an alternating quantity during a cycle is called the maximum value or amplitude of the quantity.	
1 b)	State the average power taken by a pure inductor and a pure capacitor when connected across a.c.supply.	
	Ans: The average power taken by a pure inductor is given by $VIcos(-90^\circ) = 0$	1 mark for equations
	The average power taken by a pure capacitor is given by $VIcos(90^\circ) = 0$	1 mark for final ans
1 c)	Define power factor and state its value for pure resistive circuits. Ans:	
	 Power Factor: It is the cosine of the angle between the applied voltage and the resulting current. Power factor = cosφ where, φ is the phase angle between applied voltage and current. It is the ratio of true or effective or real power to the apparent power. 	1 mark for any one valid definition
	Power factor = $\frac{\text{True Or Effective Or Real Power}}{\text{Apparent Power}} = \frac{\text{VIcos}\emptyset}{\text{VI}} = \cos\emptyset$	
	• It is the ratio of circuit resistance to the circuit impedance. Power factor = $\frac{\text{Circuit Resistance}}{\text{Circuit Impedance}} = \frac{R}{Z} = \cos\emptyset$	
	Value of power factor for purely resistive circuit = UNITY i.e one	1 mark for value
1 d)	Draw impedance triangle and voltage phasor diagram for R-L series circuits. Ans:	
	$V_{L}=IX_{L}$ $V_{L}=IX_{L}$ $V_{L}=IX_{L}$ $V_{R}=IR$ $V_{R}=IR$ Phasor Diagram	1 mark for each

1 e) Define the terms admittance and susceptance. State their units. **Ans:**

Admittance (Y):

Admittance is defined as the ability of the circuit to carry (admit) alternating current through it. It is the reciprocal of impedance Z. i.e Y = 1/Z.

¹/₂ mark for each definition

Summer – 2016 Examinations

Subject Code: 17323 (ECN)

Model Answer

Page No: 3 of 25

It's unit is siemen (S) or mho (\mathcal{O}) .

If impedance is expressed as $Z = R \pm jX$, then the admittance is obtained as,

$$Y = \frac{1}{Z} = \frac{1}{R \pm jX} = \frac{R + jX}{(R + jX)(R - jX)} = \frac{R + jX}{R^2 + X^2}$$

$$\therefore Y = \frac{R}{R^2 + X^2} \mp j\frac{X}{R^2 + X^2} = G \mp jB$$

Susceptance (B):

Susceptance is defined as the imaginary part of the admittance.

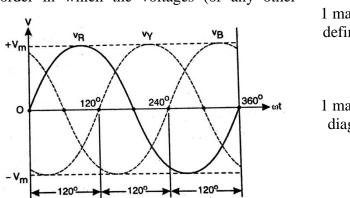
It is expressed as, $B = \frac{X}{R^2 + X^2}$

In DC circuit, the reactance is absent, hence X=0 and susceptance becomes equal to zero.

It's unit is siemen (S) or mho (\mho) .

1 f) Define phase sequence w. r. t. 3ϕ A.C.

Ans: Phase Sequence:

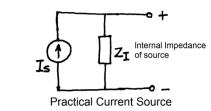

Phase sequence is defined as the order in which the voltages (or any other alternating quantity) of the three phases attain their positive v_B v_Y v_B

maximum values. In the waveforms, it is seen that the R-phase voltage attains the positive maximum value first, and after angular distance of 120°, Y-phase voltage attains its positive maximum and further after 120°, Bphase voltage attains its positive maximum value. So the phase sequence is R-Y-B.

1 g) Represent the following by symbols:

Ans:

- (i) Ideal current source
- (ii) Practical current source



1 mark for definition

1/2 mark for

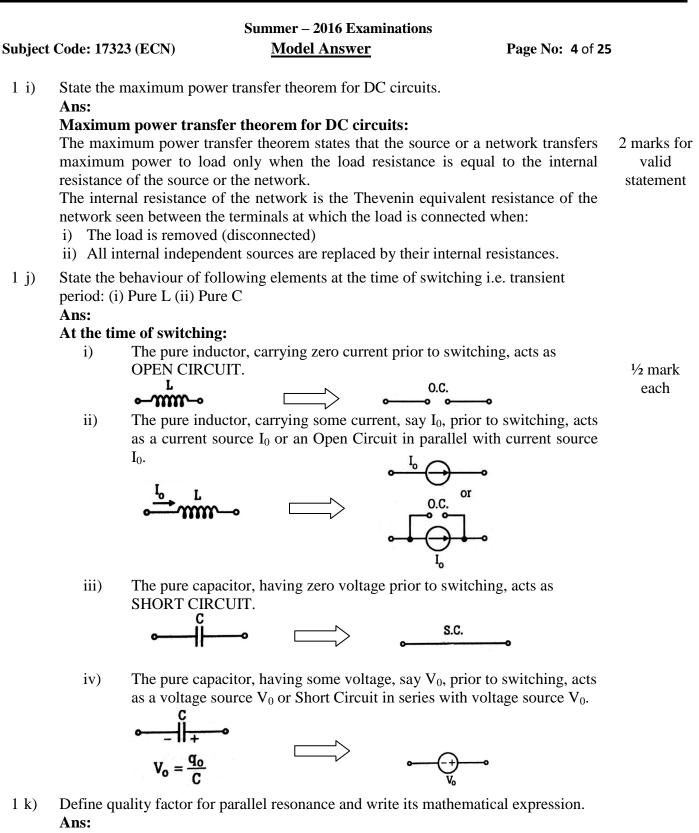
each unit

1 mark for diagram

1 mark for each symbol

1 h) State the conditions under which superposition theorem can be applied. **Ans:**

Conditions under which superposition theorem can be applied:


- 1) The circuit should be linear.
- 2) The circuit should be bilateral.

Ideal Current Source

3) There should be two or more energy sources in the circuit.

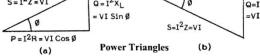
1 mark for linearity 1 mark for any other valid condition

Quality Factor of Parallel Resonance:

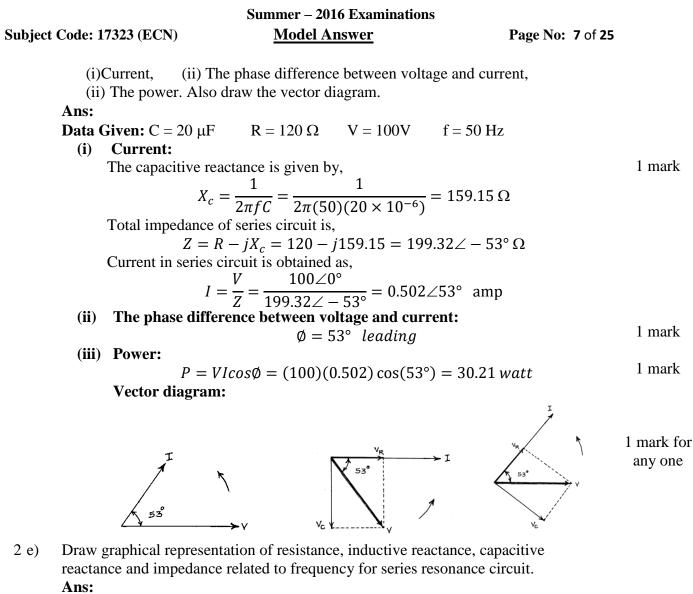
The quality factor or Q-factor of parallel resonance is defined as the ratio of the 1 m current circulating between two branches of the circuit to the current taken by the parallel circuit from the source.

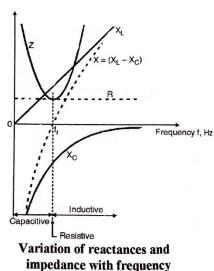
It is the current magnification in parallel circuit.

Mathematical Expression:


1 mark

Subject	Code: 1	Summer – 2016 Examinations17323 (ECN)Model AnswerPage No: 5 of 25	
		ty factor (Q-factor) = Current magnification = $\frac{1}{R}\sqrt{\frac{L}{C}}$ e, R is the resistance of an inductor in Ω, L is the inductance of an inductor in henry,	1 mark
1 l)	State t i) ii) Ans:	C is capacitance of capacitor in farad, the numerical relationship for delta connected load between: Line current and phase current Line voltage and phase voltage	
		erical relationship for delta connected load: Line current = $\sqrt{3}$ Phase current Line voltage = Phase voltage	1 mark 1 mark
2	Attem	npt any four of the following:	16
2 a)		e the following terms with reference to alternating quantity. Vaveform ii) Cycle iii) Frequency iv) Time period Waveform:	
	•)	The graphical plot of all the instantaneous values of an alternating quantity with respect to time is called 'Waveform' of the quantity. OR The graph showing variations in the magnitude and direction of an	1 mark for each definition
	ii)	alternating quantity with respect to time is called 'Waveform' of the quantity. Cycle: A complete set of variation of an alternating quantity which is repeated at	
		regular interval of time is called as a cycle.	
		OR Each repetition of an alternating quantity recurring at equal intervals is	
		known as a cycle.	
		Frequency: Number of cycles completed by an alternating quantity in one second is called 'Frequency'.	
	iv)	Time Period: Time period of an alternating quantity is defined as the time required for an alternating quantity to complete one cycle.	
2 b)		 μF capacitor is connected across a 230V, 50Hz system. nine: (i) Capacitive reactance (ii) RMS value of current (iii) Equation for voltage (iv) Equation for current 	
	Ans:		
	Data (Given: $C = 318 \mu F = 318 \times 10^{-6} F$ RMS Supply voltage $V_{rms} = V = 230V$ Frequency $f = 50 Hz$	1 mark for each bit
	(i)	Capacitive Reactance (X _C):	
		$X_c = \frac{1}{2\pi fC} = \frac{1}{2\pi (50)(318 \times 10^{-6})} = 10 \ \Omega$	
		$2n_{j} = 2n_{j} = 2$	




Subject Code: 17323 (ECN)	Summer – 2016 Examinations <u>Model Answer</u>	Page No: 6 of 25
	4 (T)	
(ii) RMS value of curren		
	$I = \frac{V}{X_c} = \frac{230}{10} = 23 A$	
(iii) Equation for voltage	e (v):	
Maximum value of vo	oltage is given by, $V_m = \sqrt{2}V_{rms}$	
	$\therefore V_m = \sqrt{2}(230) = 325.27 \text{ vol}$	t
Equation for sinusoid		
	$\sin(2\pi ft) = 325.27\sin(2\times\pi)$	\times 50t)
$\therefore v = 325.27 \sin(3)$	•	
(iv) Equation for curren	· · ·	
Maximum value of cu	irrent is given by, $I_m = \sqrt{2}I_{rms}$	
Equation for sinusoid	$\therefore I_m = \sqrt{2}(23) = 32.53 \text{ A}$	
Equation for sinusoid		
$i = I_m \sin\left(\omega t + \frac{\pi}{2}\right)$	$=I_m\sin\left(2\pi ft+\frac{1}{2}\right)$	
$\therefore i = 32.53\sin(314)$	4. $2t + \frac{\pi}{2}$) amp	
2 c) Write down different power	s in AC circuits, also write their	equations and units.
Draw power triangle.		
Ans:		
Powers in AC circuits:		
(i) Apparent Power (S	s): roduct of RMS voltage and RMS	current. 1 mark
1, 1	VA) or kilo-volt-ampere (kVA)	current. I mark
	ampere (MVA)	
e e	$S = VI = I^2 Z$ volt-amp	
(ii) Active Power or R	eal Power or True Power (P):	
-	given by the product of voltage,	
1 0	etween voltage and current.	1 mark
Unit: watt (W) or ki	lo-watt (kW) or Mega-watt (MW	()
(iii) Reactive Power or	$P = VIcos \emptyset = I^2 R$ watt Imaginary Power (Q):	
	is given by the product of voltag	e current and the sine
	etween voltage and current.	1 mark
· · ·	eactive (VAr), or kilo-volt-amper	e-reactive (kVAr) or
Mega-volt-ampere-	· · · · · ·	
	$Q = VIsin \emptyset = I^2 X$ volt-amp-reac	tive
Power Triangle:		
	active circuit and capacitive circu	it are shown in the fig. 1 mark
(a) and (b) respectively.	$P = I^2 R = VI \cos \emptyset$	(any one)
S=I ² Z=VI	Q=I ² XL Ø Q=I	² x _c
Ø	= VI Sin Ø S=I ² Z=VI	SinØ

2 d) A capacitor having capacitance of 20 μ F is connected in series with a non-inductive resistance of 120 Ω , across 100V, 50 Hz supply. Calculate:

 $1 \text{ mark} \\ \text{each for R,} \\ X_L, X_C \text{ and} \\ Z \\ \text{representati} \\ \text{on} \\$

2 f) Compare series and parallel circuits on any four points. Ans:

Comparison between Series and Parallel Circuits:

Summer – 2016 Examinations Model Answer

Page No: 8 of 25

Sr. No.	Series Circuit	Parallel Circuit
1	$ \begin{array}{c} I \\ $	$\begin{array}{c c} & I \\ & & & & \\ & & & & \\ \hline \\ + & & & & \\ \hline \\ - & & & & \\ \end{array} \\ V & R_1 \\ R_2 \\ R_3 \\ R_3$
2	A series circuit is that circuit in which the current flowing through each circuit element is same.	A parallel circuit is that circuit in which the voltage across each circuit element is same.
3	The sum of the voltage drops in series resistances is equal to the applied voltage V. \therefore V = V ₁ +V ₂ +V ₃	The sum of the currents in parallel resistances is equal to the total circuit current I. \therefore I = I ₁ +I ₂ +I ₃
4	$\therefore V = V_1 + V_2 + V_3$ The effective resistance R of the series circuit is the sum of the resistance connected in series. $R = R_1 + R_2 + R_3 + \cdots$	$\therefore I = I_1 + I_2 + I_3$ The reciprocal of effective resistance R of the parallel circuit is the sum of the reciprocals of the resistances connected in parallel. $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$
5	For series R-L-C circuit, the resonance frequency is, $f_r = \frac{1}{2\pi\sqrt{LC}}$	For parallel R-L-C circuit, the resonance frequency is, $f_r = \frac{1}{2\pi\sqrt{LC}}$
6	At resonance, the series RLC circuit behaves as purely resistive circuit.	At resonance, the parallel RLC circuit behaves as purely resistive circuit.
7	At resonance, the series RLC circuit power factor is unity.	At resonance, the Parallel RLC circuit power factor is unity.
8	At resonance, the series RLC circuit offers minimum total impedance $Z = R$	At resonance, the parallel RLC circuit offers maximum total impedance Z =L/CR
9	At resonance, series RLC circuit draws maximum current from source, $I = (V/R)$	At resonance, parallel RLC circuit draws minimum current from source, $I = \frac{V}{[L/CR]}$
10	At resonance, in series RLC circuit, voltage magnification takes place.	At resonance, in parallel RLC circuit, current magnification takes place.
11	The Q-factor for series resonant circuit is $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	The Q-factor for parallel resonant circuit is, $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$
12	Series RLC resonant circuit is Accepter circuit.	Parallel RLC resonant circuit is Rejecter circuit.

1 mark for each of any four points

Summer – 2016 Examinations

Subject Code: 17323 (ECN)

Model Answer

Page No: 9 of 25

3 Attempt any four of the following:

3 a) Explain the response of AC supply to pure inductance, draw waveform for the same.

Ans:

Response of AC supply to Pure Inductance:

The purely inductive coil with inductance "L" and almost negligible resistance connected across a.c. supply is shown in figure. The alternating voltage causes alternating current through the coil.

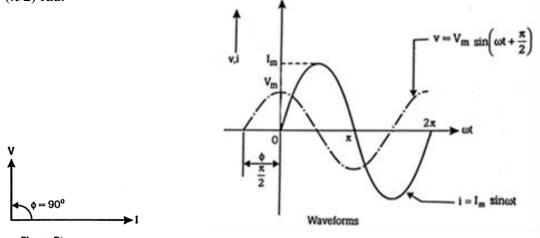
Let an alternating current flowing through coil be

The resulting alternating current will setup the alternating magnetic field. The change in flux linking the coil will induce emf in the coil, called as self-induced emf. This induced emf is always in opposition with the applied voltage is given by,

$$e = -L\frac{di}{dt}$$

As the resistance of coil is negligible, the applied voltage will have to overcome the self induced emf. Therfore, the applied voltage will be equal and opposite to the self induced emf at every instant

$$v = -e = L \frac{di}{dt}$$

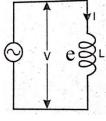

$$v = L \frac{di}{dt} = L \frac{d}{dt} (l_m \sin\omega t)$$

$$= \omega L l_m \cos\omega t = (\omega L l_m) \sin(\omega t + \frac{\pi}{2})$$

$$\therefore v = V_m sin(\omega t + \frac{\pi}{2}) \qquad 1 \text{ mark for eq. of } voltage$$

$$l = 0$$

Referring to eq. (i) and (ii), it is clear that in case of pure inductor, the current lags behind the voltage by 90° or $(\pi/2)$ rad or the voltage leads the current by 90° or $(\pi/2)$ rad.



1 mark for phasor diagram or

waveforms

3 b) Draw vector diagram, impedance triangle and power triangle for series R-L-C circuit when connected to single phase a. c. supply for the condition $X_L < X_C$.

1 mark for eq. of current

1 mark for derivation

16

Summer – 2016 Examinations

Subject Code: 17323 (ECN) **Model Answer** Page No: 10 of 25 Ans: Vector diagram of RLC series circuit for condition X_L < X_C: $V_L = I X_L$ 2 marks for phasor diagram Vx=VC-VL V = IZVc=IXc **Impedance Triangle:** R 1 mark $(X_C - X_L)$ Z **Power Triangle:** Active Power (P) V I $\cos \phi$ ø 1 mark Reactive Power (Q) V I sin ø Apparent Power (S) VΙ A 200W, 100V lamp is connected in series with a capacitor of 20µF to a 120V, 3 c) 50Hz ac supply. Calculate (i) Impedance of circuit, (ii) the current flowing through circuit, (iii) The phase angle between voltage and current. Ans:

Data Given:

Power rating of lamp P = 200W, Voltage rating $V_R = 100V$ Supply voltage $V_S = 120V$ frequency = 50Hz Capacitor C = 20µF The resistance (R) of lamp is obtained from its power and voltage rating. Power consumed P = $V_R \times I = V_R^2 / R$ Resistance of lamp, $R = \frac{V_R^2}{P} = \frac{100^2}{200} = 50\Omega$. The Capacitive reactance is given by, $Xc = \frac{1}{2\pi fc} = \frac{1}{2\pi (50)(20 \times 10^{-6})} = 159.15\Omega$. $\frac{1}{2}$ mark for resistance of lamp

 X_C

(i) Impedance of circuit (Z):

		Summer – 2016 Examinations		
Subject	t Code: 17323 (ECN)	Model Answer	Page No: 11 of 2	5
	• •	$\overline{-Xc^2} = \sqrt{(50)^2 - (159.15)^2} = 1$ g through the circuit (I): x = 0.7194	66.82 Ω.	1 mark for Z
	(iii) Phase angle bet	ween voltage and current (ϕ) $\frac{1}{2} = \tan^{-1} \frac{(-159.15)}{50} = -72.56^{\circ} = 72.55^{\circ}$	56 leading	1 mark for I 1 mark for
3 d)	A circuit having resistant across 100V, 50Hz supp	ce of 5 Ω , L = 0.4H and capacitance i ly. Calculate (i) Value of capacitance t nce, (iii) Voltage across resistor, (iv) Q	in series is connected to give resonance, (ii)	ф
	Data Given: $R = 5 \Omega$, (i) Value of Capac Condition of ser $X_L = 2\pi fL = 2\pi ($ Therefore $X_C = 1$ Since $X_c = \frac{1}{2\pi fC}$	the capacitance is given by, $\frac{1}{t(50)(125.66)} = 25.33 \mu F$ by phase (I):	Hz	1 mark for each bit for step-wise solution = 1x4= 4
	(iii) Voltage across $V_R = I \times R =$ (iv) Q-factor of reso	Resistor (V _R): 100 <i>V</i>		
3 e)	for a simple parallel circ Ans: Methods for solving pa (i) By Phasor dia	rallel ac circuits : agram. npedance method.	ain any one method	1 mark for methods
	phasor diagram, whic example, if we know obtained by the phasor		eference phasor. For hit or total current is	1 mark

Summer – 2016 Examinations <u>Model Answer</u>

Consider parallel circuit consisting of two branches and connected across alternating voltage of V volts as shown in fig.

Branch 1
$$Z_1 = \sqrt{(R_1^2 + X_L^2)}$$
;
 $I_1 = \frac{V}{Z_1}$; $\emptyset_1 = \tan^{-1}\frac{X_L}{R_1}$
Branch 2 $Z_2 = \sqrt{(R_2^2 + X_C^2)}$;
 $I_2 = \frac{V}{Z_2}$; $\emptyset_2 = \tan^{-1}\frac{X_C}{R_2}$

By Parallelogram Method:

The Current I₁ lags V by ϕ_1 and I₂ leads V by ϕ_2 as shown in phasor diagram. The total circuit current I is obtained by taking phasor sum of I₁ and I₂ by constructing parallelogram, as shown in the figure.

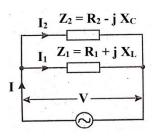
By components method:

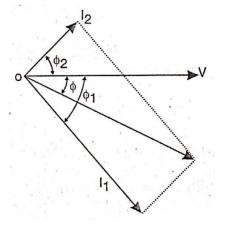
Total current I can be expressed as $I = \sqrt{(I \cos \emptyset)^2 + (I \sin \emptyset)^2}$ $I\cos\phi = I_1 \cos\phi_1 + I_2 \cos\phi_2$ $I\sin\phi = I_1 Sin\phi_1 - I_2 Sin\phi_2$ $\tan \emptyset = \frac{I \sin \emptyset}{I \cos \emptyset}$

(ii)Equivalent Impedance Method:

In this method, we find the equivalent impedance of parallel circuit. Consider the same circuit with two impedances Z_1 and Z_2 in parallel such that $Z_1 = R_1 + jX_L = |Z_1| \angle \phi_1$ and $Z_2 = R_1 - jX_c = |Z_2| \angle -\phi_2$ Therefore $Zeq = \frac{Z_1 * Z_2}{Z_1 + Z_2}$ (Z is represented in complex form) Current through branch 1 is $I_1 = \frac{V}{Z_1}$ and Current through branch 2 is $I_2 = \frac{V}{Z_2}$ The total current equal to $I = \frac{V}{Zeq}$.

(iii)Admittance method:


Admittance is defined as reciprocal of impedance. It is represented by symbol 1 mark Y. Its unit is mho or siemens (S).


$$Y = \frac{1}{z} = \frac{1}{z_1} + \frac{1}{z_2} = Y_1 + Y_2 = \frac{1}{v}$$

$$\frac{1}{zeq} = \frac{1}{z_1} + \frac{1}{z_2} \quad \text{and} \quad Y_{eq} = Y_1 + Y_2$$

Therefore branch current $I_1 = V Y_1$ and $I_2 = V Y_2$ Total current $I = V Y_{eq}$

The admittance is represented in rectangular form as $Y = G \mp jB$.

Page No: 12 of 25

Summer – 2016 Examinations Model Answer

Page No: 13 of 25

1 mark for

1 mark

16

Where G – conductance and B – susceptance. Can be found using relation $G = \frac{R}{Z^2}$ and $B = \frac{X}{Z^2}$. The sign of susceptance is –ve for inductive circuit and +ve for capacitive circuit.

3 f) Two impedances of $(3+j4)\Omega$ and $(12-j4) \Omega$ are connected in parallel across 230V, 1- ϕ , 50Hz ac supply. Determine current drawn by each path and total current in the circuit.

Ans:

Subject Code: 17323 (ECN)

Data Given: $Z_1 = 3 + j4 = 5 \angle 53.13 \circ \Omega$ and $Z_2 = 12 - j4 = 12.65 \angle -18.44 \circ \Omega$ V = 230V f = 50 Hz	R to P conversion
$I_1 = \frac{V}{Z_1} = \frac{230\angle 0^\circ}{5\angle 53.13^\circ} = 46\angle -53.13^\circ = (27.6 - j36.8) \text{ A}$	1 mark
$I_2 = \frac{V}{Z_2} = \frac{230\angle 0^{\circ}}{12.65\angle -18.44^{\circ}} = 18.18\angle \mathbf{18.44^{\circ}} = (17.25 + \mathbf{j5.75}) \mathbf{A}$	1 mark

Total current

 $I = I_1 + I_2 = 44.84 - j31.05 = 54.54 \angle -34.70 A$

4 Attempt any four of the followings

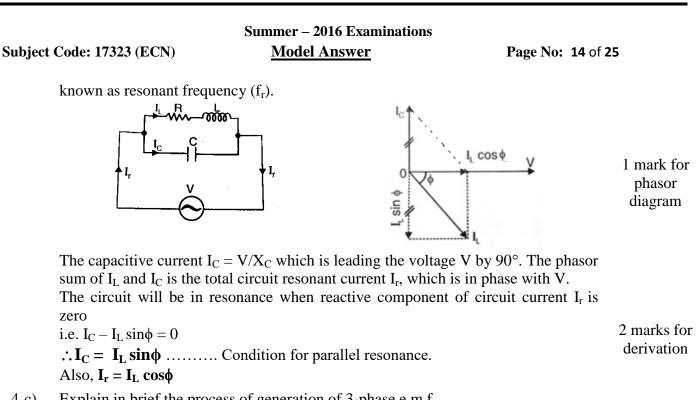
4 a) A choke coil has resistance of 4 Ω and inductance of 0.07H is connected in parallel with another coil of resistance of 10 Ω and inductance of 0.12H. The combination is connected across 230V, 50Hz supply. Determine total current and current through each branch.

Ans:

Data Given:
$$R_1 = 4 \Omega$$
 $L_1 = 0.07H$ $R_2 = 10 \Omega$ $L_2 = 0.12H$
 $X_{L1} = 2\pi f L_1 = 2\pi (50)(0.07) = 21.99 \cong 22 \Omega$
 $X_{L2} = 2\pi f L_2 = 2\pi (50)(0.12) = 37.7 \Omega$
 $Z_1 = R_1 + j X_{L1} = (4+j22) = 22.35 \angle 79.7^{\circ} \Omega$ 1 mark for
 $Z_2 = R_2 + j X_{L2} = (10+j37.7) = 39 \angle 75.144^{\circ} \Omega$
Branch 1 current is given by,
 $I_1 = \frac{V}{Z_1} = \frac{230 \angle 0^{\circ}}{22.35 \angle 79.7^{\circ}} = 10.3 \angle -79.7^{\circ} A = (1.84 - j10.13) A$
Branch 2 current is given by,
 $I_2 = \frac{V}{Z_2} = \frac{230 \angle 0^{\circ}}{39 \angle 75.144^{\circ}} = 5.89 \angle -75.144^{\circ} A = (1.51 - j5.7) A$ 1 mark
Total current is,
 $I = I_1 + I_2 = (1.84 - j10.13) + (1.51 - j5.7)$
 $I = (3.35 - j15.825) A = 16.17 \angle -78.04 A$

4 b) Derive the condition for parallel resonance.

Ans:


Parallel Resonance:

A parallel circuit containing reactive elements (L&C) is said to be in resonance when the circuit power factor is unity. The frequency at which it occurs called as resonant frequency.

Consider the circuit consisting of a coil of very small resistance R and inductance L, is connected in parallel with a capacitor C as shown in the figure. If the supply frequency is adjusted such that the resultant current I is in phase with voltage V, then the circuit is said to be resonating. The corresponding frequency is

1 mark for circuit diagram

4 c) Explain in brief the process of generation of 3-phase e.m.f.

Ans:

Generation of 3-phase e.m.f.:

Three identical coils A, B and C displaced by 120° (electrical) from each other and rotating in anticlockwise direction with angular velocity ω rad/sec in the gap between two magnetic poles, cut the magnetic field. According to Faraday's law of electromagnetic induction, the emf will be induced in each coil. The magnitude of emf depends upon the rate of flux cut by the coil. Since the rate of flux cut changes with position of coil in the magnetic field, an alternating emf is induced in each coil. The nature of emf is same but since the coils are displaced from each other by 120°, the emfs induced in them will also get displaced in time phase from each other by 120°.

Coil B Phase A Phase B Phase C Coil A 120

1 mark for diagram of basic alternator

1 mark for waveforms

2 marks for explanation

The equation of three emf can be represented by

Coil C

 $e_a = E_m Sin\omega t$ $e_b = E_m Sin(\omega t - 120^0)$ $e_c = E_m \operatorname{Sin}(\omega t - 240^0).$

4 d) State any four advantages of polyphase circuit over single phase circuit.

Ans:

Advantages and of polyphaser (3-phase) circuits over 1-phase circuits:

- Three-phase transmission is more economical than single-phase transmission. i) It requires less copper material.
- Parallel operation of 3-phase alternators is easier than that of single-phase ii)

1 mark for each of any

Summer – 2016 Examinations **Model Answer**

Page No: 15 of 25

alternators.

Subject Code: 17323 (ECN)

- Single-phase loads can be connected along with 3-ph loads in a 3-ph system. iii)
- iv) Instead of pulsating power of single-phase supply, constant power is obtained in 3-phase system.
- Three-phase induction motors are self-starting. They have high efficiency, v) better power factor and uniform torque.
- The power rating of 3-phase machine is higher than that of 1-phase machine vi) of the same size.
- The size of 3-phase machine is smaller than that of 1-phase machine of the vii) same power rating.
- viii) For same power rating, three-phase motors are cheaper than the single-phase motors.
- 4 e) A balanced delta connected load having impedance of $3+j4 \Omega$ connected to 400V, 3-phase ac supply. Determine (i) Line current, (ii) Power factor, (iii) Active power (iv) Apparent power.

Ans:

Data Given: $Z_{ph} = 3+j4 \ \Omega = 5 \angle 53.13 \ \Omega$ For delta connection $V_L = V_{ph} = 400V$. Therefore $I_{ph} = \frac{V_{ph}}{Z_{ph}} = \frac{400 \angle 0^\circ}{5 \angle 53.13^\circ} = 80 \angle -53.13^\circ \text{ A}$

Line current $I_L = \sqrt{3} \, Iph = \sqrt{3} \, (80) = 138.56 \, A$ (i)

(ii) Power factor =
$$\cos \phi = \frac{Rph}{Zph} = \frac{3}{5} = 0.6$$
 (lag)

Active power P = $\sqrt{3}$ V_L I_L cos ϕ = **57598.31 watts** = **57.59 kW** (iii)

(iv) Apparent power =
$$S = \sqrt{3} V_L I_L = 95997.184 VA = 95.99 kVA$$

A balanced star connected load of $(8+i6) \Omega$ per phase is connected to a balanced 3-4 f) phase, 400V supply. Find the line current, power factor, power and total volt amperes.

Ans:

Data Given: $Z_{ph} = (8+j6) \Omega = 10 \angle 36.87^{\circ} \Omega$ $V_L = 400 V$ In star connected load $V_L = \sqrt{3} V ph$ and $I_L = Iph$. 1 marks for $V_{ph} = \frac{V_L}{\sqrt{3}} = \frac{400}{\sqrt{3}} = 230.94$ V Line Current $I_L = I_{ph} = \frac{V_{ph}}{Z_{ph}} = \frac{230.94 \angle 0^\circ}{10 \angle 36.87^\circ} = 23.094 \angle -36.87^\circ A$ (i) Power factor $\cos\phi = \frac{Rph}{Zph} = \frac{8}{10} = 0.8$ (lag). (ii) Active power P = $\sqrt{3} V_L I_L \cos\phi = \sqrt{3} (400)(23.094)(0.8)$ (iii) =12800 Watts or 12.8 kW.

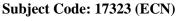
Apparent power S = $\sqrt{3}$ V_L I_L = $\sqrt{3}$ (400)(23.094) = 16000 VA or 16 kVA. (iv)

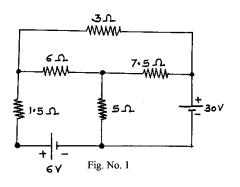
5 Attempt any two of the following:

5 a) Determine the current through 1.5Ω in the network using Thevenin's theorem.

1 mark for stepwise solution of each bit

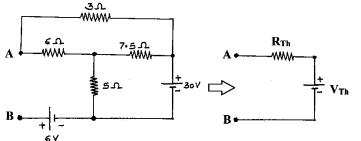
four


solution of each bit


stepwise

Summer – 2016 Examinations Model Answe<u>r</u>

Page No: 16 of 25



Ans:

Using Thevenin's Theorem:

Here resistance of our interest is 1.5Ω , so this is the load resistance.

According to Thevenin's theorem, the circuit between load terminals A-B excluding load resistance can be represented by simple circuit consisting of a voltage source V_{Th} in series with a resistance R_{Th} , as shown in the following figure.

Determination of Thevenin's Equivalent Voltage Source (V_{Th}):

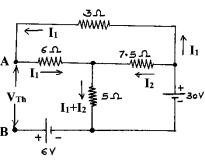
The venin's equivalent voltage source V_{Th} is the open circuit voltage across the load terminals A-B due to internal sources, as shown in the following figure.

Since terminal B is open (floating), the current through source 6V is zero. Therefore, circuit currents are due to source 30V only and are as shown in the figure.

Total resistance across 30V source is,

R = [(3 + 6)||7.5] + 5 =
$$\frac{9 \times 7.5}{9 + 7.5}$$
 + 5 = 9.091 Ω
Therefore, current supplied by 30V source,

$$I = I_1 + I_2 = \frac{V}{R} = \frac{30}{9.091} = 3.3 A$$

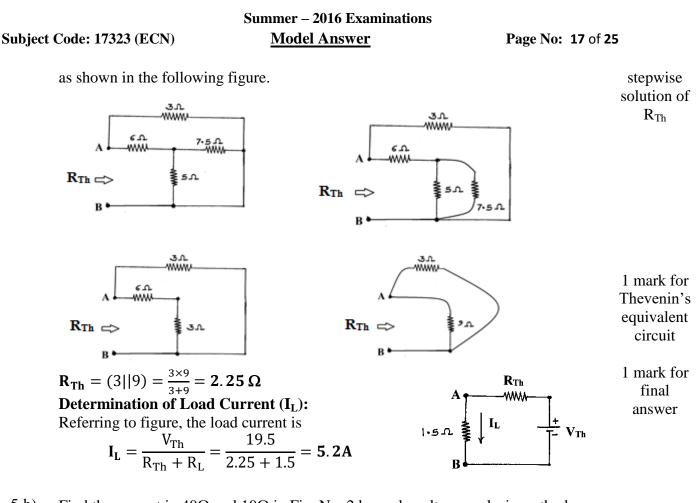

The resistances $(3+6)\Omega$ and 7.5 Ω are in parallel. By current division, the current flowing through $(3+6)\Omega$ is

$$I_1 = I \frac{7.5}{(3+6)+7.5} = (3.3) \frac{7.5}{16.5} = 1.5 \text{ A}$$

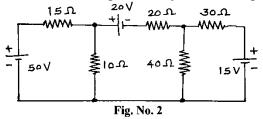
By KVL, the open circuit voltage between terminals A-B is given by, $V_{Th} = V_{OC} = 6I_1 + 5I - 6 = 6(1.5) + 5(3.3) - 6 = 19.5$ volt $\therefore V_{Th} = 19.5$ volt

Determination of Thevenin's Equivalent Resistance (R_{Th}):

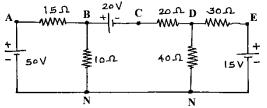
Thevenin's equivalent resistance is the resistance seen between the load terminals while looking back into the network, with internal independent voltage sources replaced by short-circuit and independent current sources replaced by open-circuit,


1 mark for circuit

1 mark


2 marks for computing V_{Th} by any method

2 marks for


5 b) Find the current in 40Ω and 10Ω in Fig. No. 2 by node voltage analysis method.

Ans:

Node Voltage Analysis Method:

Step I: Mark the nodes and reference node.

1 mark for node identificati on

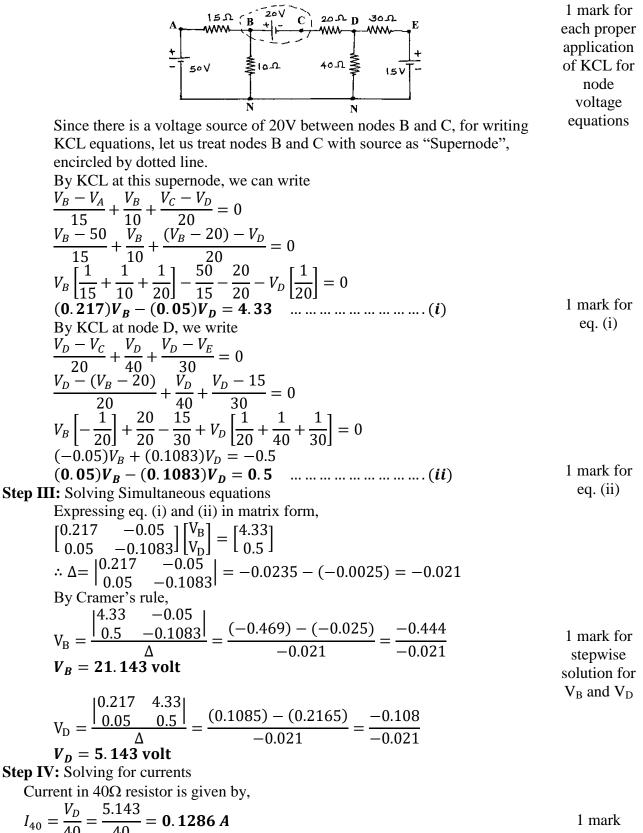
Let the nodes be A, B, C, D, E and reference node is N. From the above circuit diagram we can write,

$$V_A = 50$$

$$V_E = 15$$

$$V_B - V_C = 20$$

$$\therefore V_C = V_B - 20$$


Only two unknown voltages are V_B and V_D .

Summer – 2016 Examinations Model Answer

Page No: 18 of 25

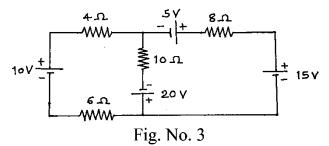
Step II: Apply KCL at nodes with unknown voltages

Summer – 2016 Examinations <u>Model Answer</u>

Page No: 19 of 25

Subject Code: 17323 (ECN)

would Answer


1 mark

C

Current in 10Ω resistor is given by,

$$I_{10} = \frac{V_B}{10} = \frac{21.143}{10} = 2.1143 A$$

5 c) Calculate current in 10Ω resistance using mesh analysis in the circuit shown in Fig. No. 3.

Ans: Mesh Analysis:

	I mark for
$A \qquad \qquad$	mesh
	identificati
10 IL	on and
$10V \xrightarrow{-1}$ I_1 $-7 + (I_2) \xrightarrow{+7}$ $15v$	current
6 0 1 1+ 20 V	marking

i) There are two meshes in the network. Mesh 1: ABCDA Mesh 2: CBEFC ii) Mesh currents I ₁ and I ₂ are marked clockwise as shown. iii) The polarities of voltage drops across resistors are also shown with reference to respective mesh currents. iv) By tracing mesh 1 clockwise from node D, KVL equation is, $10 - 4I_1 - 10(I_1 - I_2) + 20 - 6I_1 = 0$ $\therefore 20I_1 - 10I_2 = 30$		_	
Mesh 2: CBEFCcorrectii) Mesh currents I1 and I2 are marked clockwise as shown.applicationiii) The polarities of voltage drops across resistors are also shown with reference to respective mesh currents.of KVLiv) By tracing mesh 1 clockwise from node D, KVL equation is, $10 - 4I_1 - 10(I_1 - I_2) + 20 - 6I_1 = 0$ 1 mark for eq. (1)iv) By tracing mesh 2 clockwise from node B, KVL equation is, $5 - 8I_2 - 15 - 20 - 10(I_2 - I_1) = 0$ 1 mark for eq. (1)by tracing mesh 2 clockwise from node B, KVL equation is, $5 - 8I_2 - 15 - 20 - 10(I_2 - I_1) = 0$ 1 mark for eq. (2)(20 -10) $I_{10} - 18I$ I_1 I_2 (2) -101 $I_{10} - 18I$ I_2 I_30 (30 -10) $I_1 = \frac{30 - 10}{-10}$ I_2 I_30 (1) mark for matrix I_2 I_30 (1) mark for $I_1 = \frac{30 - 10}{-18}$ I_2 $I_30 - (-100) = -260$ (2) $I_1 = \frac{30 - 10}{-18}$ I_2 I_2 (30 - 10) $I_1 = \frac{30 - 10}{-260}$ I_2 I_1	i)	There are two meshes in the network.	
ii) Mesh currents I ₁ and I ₂ are marked clockwise as shown. iii) The polarities of voltage drops across resistors are also shown with reference to respective mesh currents. iv) By tracing mesh 1 clockwise from node D, KVL equation is, $10 - 4I_1 - 10(I_1 - I_2) + 20 - 6I_1 = 0$ $\therefore 20I_1 - 10I_2 = 30$		Mesh 1: ABCDA	1 mark for
ii) Mesh currents I ₁ and I ₂ are marked clockwise as shown. iii) The polarities of voltage drops across resistors are also shown with reference to respective mesh currents. iv) By tracing mesh 1 clockwise from node D, KVL equation is, $10 - 4I_1 - 10(I_1 - I_2) + 20 - 6I_1 = 0$ $\therefore 20I_1 - 10I_2 = 30$		Mesh 2: CBEFC	correct
iii) The polarities of voltage drops across resistors are also shown with reference to respective mesh currents. iv) By tracing mesh 1 clockwise from node D, KVL equation is, $10 - 4I_1 - 10(I_1 - I_2) + 20 - 6I_1 = 0$ $\therefore 20I_1 - 10I_2 = 30$	ii)		application
respective mesh currents. iv) By tracing mesh 1 clockwise from node D, KVL equation is, $10 - 4I_1 - 10(I_1 - I_2) + 20 - 6I_1 = 0$ $\therefore 20I_1 - 10I_2 = 30$			
iv) By tracing mesh 1 clockwise from node D, KVL equation is, $10 - 4I_1 - 10(I_1 - I_2) + 20 - 6I_1 = 0$ 1 mark for $\therefore 20I_1 - 10I_2 = 30$	111)		
$10 - 4I_1 - 10(I_1 - I_2) + 20 - 6I_1 = 0$ $20I_1 - 10I_2 = 30 \dots $	iv)	1	
$\therefore 20I_{1} - 10I_{2} = 30 \dots (1)$ By tracing mesh 2 clockwise from node B, KVL equation is, $5 - 8I_{2} - 15 - 20 - 10(I_{2} - I_{1}) = 0$ $\therefore 10I_{1} - 18I_{2} = 30 \dots (2)$ I mark for eq. (1) 1 mark for eq. (2) $\begin{bmatrix} 20 & -10\\ 10 & -18 \end{bmatrix} \begin{bmatrix} I_{1}\\ I_{2} \end{bmatrix} = \begin{bmatrix} 30\\ 30 \end{bmatrix}$ $\therefore \Delta = \begin{vmatrix} 20 & -10\\ 10 & -18 \end{vmatrix} = -360 - (-100) = -260$ By Cramer's rule, $I_{1} = \frac{\begin{vmatrix} 30 & -10\\ 30 & -18 \end{vmatrix} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ I mark for I_{1}	1.,		1 mark for
By tracing mesh 2 clockwise from node B, KVL equation is, $5 - 8I_2 - 15 - 20 - 10(I_2 - I_1) = 0$ $\therefore 10I_1 - 18I_2 = 30 \dots \dots \dots \dots \dots \dots (2)$ 1 mark for eq. (2) $\begin{bmatrix} 20 & -10 \\ 10 & -18 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 30 \\ 30 \end{bmatrix}$ $\therefore \Delta = \begin{vmatrix} 20 & -10 \\ 10 & -18 \end{vmatrix} = -360 - (-100) = -260$ By Cramer's rule, $I_1 = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ 1 mark for I_1			
$5 - 8I_2 - 15 - 20 - 10(I_2 - I_1) = 0$ $\therefore 10I_1 - 18I_2 = 30 \dots $			eq. (1)
$ \therefore 10I_{1} - 18I_{2} = 30 \dots (2) $ 1 mark for eq. (2) 1 mark for matrix equation 1 mark for Mark for I mark for			
v) Expressing eq.(1) and (2) in matrix form, $\begin{bmatrix} 20 & -10 \\ 10 & -18 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 30 \\ 30 \end{bmatrix}$ $\therefore \Delta = \begin{vmatrix} 20 & -10 \\ 10 & -18 \end{vmatrix} = -360 - (-100) = -260$ By Cramer's rule, $I_1 = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ $I \text{ mark for } I_1$		$5 - 8I_2 - 15 - 20 - 10(I_2 - I_1) = 0$	
v) Expressing eq.(1) and (2) in matrix form, $\begin{bmatrix} 20 & -10 \\ 10 & -18 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 30 \\ 30 \end{bmatrix}$ 1 mark for $\therefore \Delta = \begin{vmatrix} 20 & -10 \\ 10 & -18 \end{vmatrix} = -360 - (-100) = -260$ By Cramer's rule, $I_1 = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ 1 mark for I_1		$\therefore 10I_1 - 18I_2 = 30 \dots $	1 mark for
$\begin{bmatrix} 20 & -10 \\ 10 & -18 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 30 \\ 30 \end{bmatrix}$ 1 mark for $\therefore \Delta = \begin{vmatrix} 20 & -10 \\ 10 & -18 \end{vmatrix} = -360 - (-100) = -260$ By Cramer's rule, $I_1 = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ 1 mark for I_1	v)		eq. (2)
$ \therefore \Delta = \begin{vmatrix} 20 & -10 \\ 10 & -18 \end{vmatrix} = -360 - (-100) = -260 $ matrix equation By Cramer's rule, $I_{1} = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A} $ I mark for I_{1}			1 • • •
$ \therefore \Delta = \begin{vmatrix} 20 & -10 \\ 10 & -18 \end{vmatrix} = -360 - (-100) = -260 $ matrix equation By Cramer's rule, $I_{1} = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A} $ I mark for I_{1}		$\begin{bmatrix} 20 & 10 \\ 10 & -18 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 30 \\ 30 \end{bmatrix}$	1 mark for
By Cramer's rule, $I_{1} = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ I mark for I ₁			
By Cramer's rule, $I_{1} = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ I mark for I ₁		$\therefore \Delta = \begin{vmatrix} 20 & 10 \\ 10 & 10 \end{vmatrix} = -360 - (-100) = -260$	
$I_{1} = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{A} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ 1 mark for I ₁		10 10	equation
$I_{1} = \frac{\begin{vmatrix} 30 & -10 \\ 30 & -18 \end{vmatrix}}{\Delta} = \frac{(30 \times -18) - (30 \times -10)}{-260} = \frac{-540 + 300}{-260} = 0.923 \text{ A}$ $I_{1} = \frac{\begin{vmatrix} 20 & 30 \\ 10 & 30 \end{vmatrix}}{\Delta} = \frac{(20 \times 30) - (10 \times 30)}{-260} = \frac{600 - 300}{-260} = -1.154 \text{ A}$ $I = \frac{1 \text{ mark for }}{I_{2}}$		130 - 101	
$I_{1} = \frac{130^{\circ} - 181}{\Delta} = \frac{(00 \times 10)^{\circ} (00 \times 10)}{-260} = \frac{010^{\circ} + 000}{-260} = 0.923 \text{ A} \qquad I_{1}$ $I_{2} = \frac{\begin{vmatrix} 20 & 30 \\ 10 & 30 \end{vmatrix}}{\Delta} = \frac{(20 \times 30) - (10 \times 30)}{-260} = \frac{600 - 300}{-260} = -1.154 \text{ A} \qquad I_{2}$		$\begin{bmatrix} 30 & 10 \\ 20 & 10 \end{bmatrix}$ $(30 \times -18) - (30 \times -10) = -540 + 300$	1 mark for
$I_{2} = \frac{\begin{vmatrix} 20 & 30 \\ 10 & 30 \end{vmatrix}}{\Delta} = \frac{(20 \times 30) - (10 \times 30)}{-260} = \frac{600 - 300}{-260} = -1.154 \text{ A}$ $I \text{ mark for } I_{2}$		$I_1 = \frac{130^{\circ} - 181}{10^{\circ} - 181} = \frac{(000^{\circ} - 10)^{\circ} (000^{\circ} - 10)^{\circ}}{200^{\circ}} = \frac{0.923 \text{ A}}{200^{\circ}} = 0.923 \text{ A}$	I_1
$I_2 = \frac{\begin{vmatrix} 20 & 30 \\ 10 & 30 \end{vmatrix}}{\Delta} = \frac{(20 \times 30) - (10 \times 30)}{-260} = \frac{600 - 300}{-260} = -1.154 \text{ A}$ 1 mark for I ₂		-260 - 260	
$I_2 = \frac{110 - 301}{\Delta} = \frac{(20 \times 30)^2 (10 \times 30)}{-260} = \frac{300^2 - 300}{-260} = -1.154 \text{ A}$		$\begin{bmatrix} 20 & 50 \\ 10 & 20 \end{bmatrix}$ (20 × 30) – (10 × 30) 600 – 300	1 mark for
$\Delta -260 -260$		$I_2 = \frac{110 - 301}{1 - 301} = \frac{120 \times 300}{1 - 300} = \frac{100 \times 300}{1 - 300} = -1.154 \text{ A}$	
		2 Δ -260 -260	▲ 2

	Summer – 2016 Examinations				
Subject	t Code: 17323 (ECN)	Model Answer	Page No: 20 of	25	
		rough 10Ω resistor from node E - $I_2 = 0.923 - (-1.154) = 2$.		1 mark for I	
6	Attempt any four of the f	ollowing:		16	
6 a)	L and C. Ans: Concept of initial and fina	al and final conditions in switch al conditions: t elements the initial and fina			

At any time it acts like resistor only, with no change in condition.

ii) Inductor:

<u>The current through an inductor cannot change instantly.</u> If the inductor current is zero just before switching, then whatever may be the applied voltage, just after switching the inductor current will remain zero. i.e the inductor must be acting as open-circuit at instant t = 0. If the inductor current is I_0 before switching, then just after switching the inductor current will remain same as I_0 , and having stored energy hence it is represented by a current source of value I_0 in parallel with open circuit.

As time passes the inductor current slowly rises and finally it becomes constant. Therefore the voltage across the inductor falls to $\text{zero}\left[v_L = L\frac{di_L}{dt} = 0\right]$. The presence of current with zero voltage exhibits short circuit condition. Therefore, under steady-state constant current condition, the inductor is represented by a short circuit. If the initial inductor current is non-zero I₀, making it as energy source, then finally inductor is represented by current source I₀ in parallel with a short circuit.

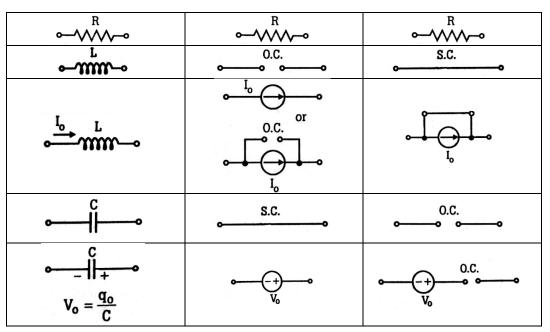
iii) Capacitor:

<u>The voltage across capacitor cannot change instantly.</u> If the capacitor voltage is zero initially just before switching, then whatever may be the current flowing, just after switching the capacitor voltage will remain zero. i.e the capacitor must be acting as short-circuit at instant t = 0. If capacitor is previously charged to some voltage V_0 , then also after switching at t = 0, the voltage across capacitor remains same V_0 . Since the energy is stored in the capacitor, it is represented by a voltage source V_0 in series with short-circuit.

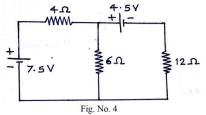
As time passes the capacitor voltage slowly rises and finally it becomes constant. Therefore the current through the capacitor falls to $zero \left[i_{C} = C \frac{dv_{C}}{dt} = \right]$

0. The presence of voltage with zero current exhibits open circuit condition.

Therefore, under steady-state constant voltage condition, the capacitor is represented by a open circuit. If the initial capacitor voltage is non-zero V_0 , making it as energy source, then finally capacitor is represented by voltage source V_0 in series with an open-circuit.


The initial and final conditions are summarized in following table:

Element and condition at	Initial Condition at	Final Condition at	
$t = 0^{-1}$	$t = 0^+$	$t = \infty$	



Summer – 2016 Examinations **Model Answer**

Page No: 21 of 25

6 b) Find the current through 4Ω resistance shown in Fig. No. 4 using superposition theorem.

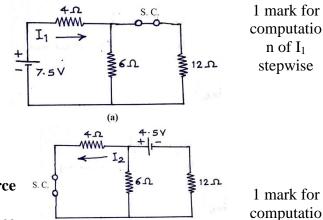
Ans:

Solution by Superposition Theorm:

According to Superposition theorem, the current in any branch is given by the algebraic sum of the currents caused by the independent sources acting alone while the other voltage sources replaced by short circuit and current sources replaced by open circuit.

i) The 7.5V source acting alone: (4.5V source replaced by short-circuit)

Referring to fig.(a), total circuit resistance appearing across 7.5V source is,


 $R_{T1} = 4 + (6||12) = 4 + \frac{6 \times 12}{6 + 12} = 8 \Omega$ Current supplied by 7.5V source is,

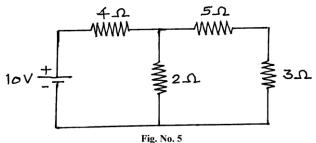
 $I_{S1} = \frac{V_1}{R_{T1}} = \frac{7.5}{8} = 0.9375 \text{ A}$

The current flowing through 4Ω resistor due to 7.5V source alone is

 $I_1 = I_{S1} = 0.9375 A$

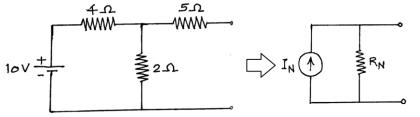
The 4.5 V source acting alone: (7.5V source replaced by short-circuit) Referring to fig.(b), total circuit resistance

(b)


1 mark for circuit (a) and (b)

Summer – 2016 Examinations				
Subject Code	: 17323 (ECN) <u>Model Answer</u> Page No: 22 of 2	5		
	appearing across 4.5V source is, $R_{T2} = (4 6) + 12 = \frac{4 \times 6}{4 + 6} + 12 = 14.4 \Omega$ Current supplied by 4.5V source is, $I_{S2} = \frac{V_2}{R_{T2}} = \frac{4.5}{14.4} = 0.3125 A$ By current division formula, the current flowing through 4 Ω due to 4.5V	n of I ₂ stepwise		
	source alone is, $I_2 = I_{S2} \frac{6}{4+6} = 0.3125(0.6) = 0.1875 \text{ A}$ Current through 4 Ω load resistor (I_L): Since direction of current I_2 is opposite to that of I_1 , sign of I_2 must be taken as negative. By superposition theorem, load current is given by,	$\begin{array}{l} 1 \text{ mark for} \\ \text{computatio} \\ \text{n of } I_L \\ \text{stepwise} \end{array}$		

 $I_{L} = I_{1} - I_{2} = 0.9375 - 0.1875 = 0.75 \text{ A}$ (Direction is same as I_{1})


6 c) Use Norton's theorem, find the current through 3Ω resistance, for the circuit shown in Fig. No.5

Ans:

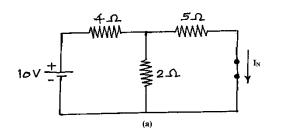
Solution by Norton's Theorem:

According to Norton's theorem, the circuit between load terminals excluding load resistance can be represented by simple circuit consisting of a current source I_N in parallel with a resistance R_N, as shown in the following figure.

1 mark

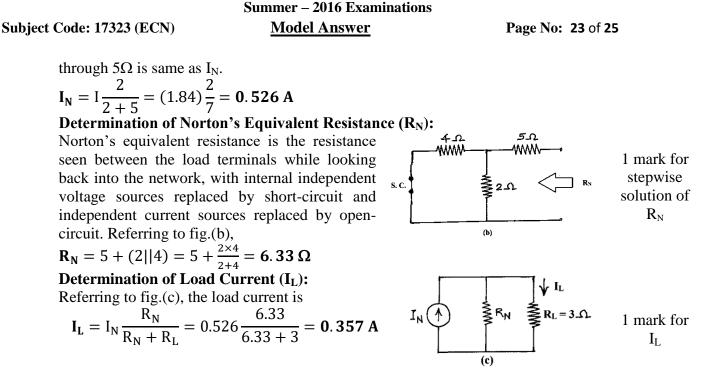
Determination of Norton's Equivalent Current Source (I_N): Norton's equivalent current source I_N is the current flowing through a short-circuit

across the load terminals due to internal sources, as shown in fig.(a). Total resistance across 10V source is


Total resistance across 10V source 1s,

$$R = 4 + (5||2) = 4 + \frac{5 \times 2}{5 + 2} = 5.43 \Omega$$
Therefore, current supplied by source,

$$I = \frac{V}{V} = \frac{10}{10} = 1.84 \text{ A}$$


$$I = \frac{V}{R} = \frac{10}{5.43} = 1.84 \text{ A}$$

The resistances 2Ω and 5Ω are in parallel. By current division, the current flowing

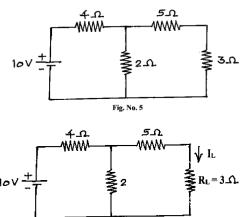
1 mark for stepwise solution of I_{N}

6 d) State Norton's theorem and write its procedural steps to find current in a branch (Assume a simple circuit).

Ans:

figure.

Norton's Theorem:

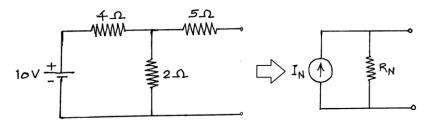

Any two terminal circuit having number of linear impedances and sources (voltage, current, dependent, independent) can be represented by a simple equivalent circuit consisting of a single current source I_N in parallel with an impedance Z_N across the two terminals, where the source current I_N is equal to the short circuit current caused by internal sources when the two terminals are short circuited and the value of the parallel impedance Z_N is equal to the impedance of the circuit while looking back into the circuit across the two terminals, when the internal independent voltage sources are replaced by short-circuits and independent current sources by open circuits.

a current source I_N in parallel with a resistance R_N, as shown in the following

Procedure to find branch current using Norton's Theorem:

Consider a simple circuit of Q. 6 (c), in which we need to find current through 3Ω by using Norton's theorem.

Step I: Identify the load branch and load current: Here 3Ω is the load branch and I_L be the load current as shown in the figure. **Step II:** According to Norton's theorem, the circuit between load terminals ¹⁰V excluding load resistance can be represented by simple circuit consisting of


3 marks for stepwise procedure

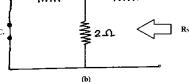
1 mark

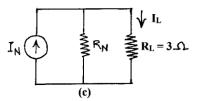
Summer – 2016 Examinations Model Answer

Page No: 24 of 25

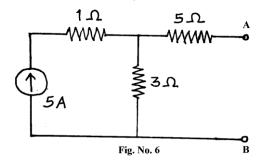
Step III: Determine of Norton's Equivalent Current Source (I_N) : Norton's equivalent current source I_N is the current flowing through a short-circuit $1 \circ V$ across the load terminals due to internal sources, as shown in the fig.(a).

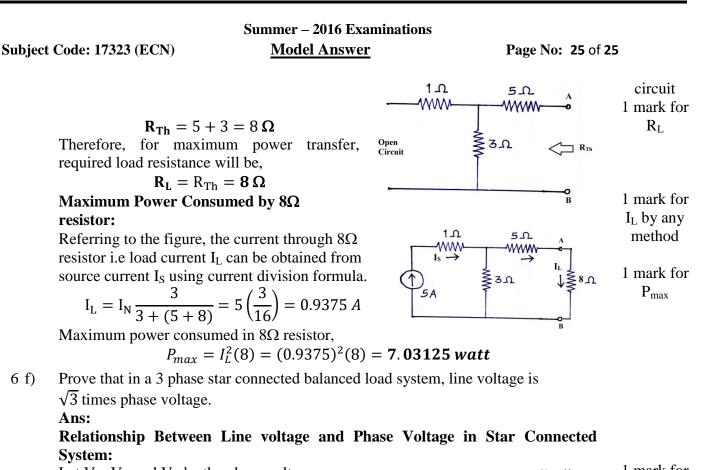
Step IV: Determination of Norton's


Equivalent Resistance (R_N):


Norton's equivalent resistance is the resistance seen between the load terminals while looking back into the network, with internal independent voltage sources replaced by short-circuit and independent current sources replaced by opencircuit, as shown in fig.(b).

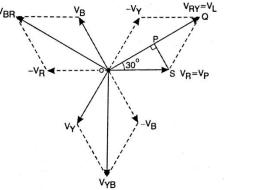
Step V: Determination of Load Current (I_L): Replace the original circuit by Norton's equivalent circuit and connect load resistance to it, as shown in fig,(c). The load current is given by,


$$I_{\rm L} = I_{\rm N} \frac{R_{\rm N}}{R_{\rm N} + R_{\rm L}}$$


6 e) Find the value of resistance to be connected across AB so as to consume maximum power in Fig. No. 6. Also find the maximum power consumed by it.

Ans:

According to maximum power transfer theorem, the maximum power will be transferred to load R_L only when R_L is equal to Thevenin's equivalent resistance (R_{Th}) of the network, while looking back into the network between the load terminals, when the internal independent voltage sources are replaced by short-circuit and independent current sources are replaced by open-circuit. Here, only current source is present, hence it is replaced by open circuit as shown.


Let V_R , V_Y and V_B be the phase voltages. V_{RY} , V_{YB} and V_{BR} be the line voltages.

The line voltages are expressed as:

$$V_{RY} = V_R - V_Y$$

$$\mathbf{v}_{\mathrm{YB}} = \mathbf{v}_{\mathrm{Y}} - \mathbf{v}_{\mathrm{B}}$$
$$\mathbf{V}_{\mathrm{BR}} = \mathbf{V}_{\mathrm{B}} - \mathbf{V}_{\mathrm{R}}$$

In phasor diagram, the phase voltages are drawn first with equal amplitude and displaced from each other by 120°. Then line voltages are drawn as per the above equations. It is seen that the line voltage

1 mark for phasor diagram

2 marks for stepwise explanation

 V_{RY} is the phasor sum of phase voltages V_R and $-V_Y$. We know that in parallelogram, the diagonals bisect each other with an angle of 90°. Therefore in $\triangle OPS$, $\angle P = 90^\circ$ and $\angle O = 30^\circ$.

$$[OP] = [OS] \cos 30^{\circ}$$

Since $[OP] = V_L/2$ and $[OS] = V_{ph}$
 $\therefore \frac{V_L}{2} = V_{ph} \cos 30^{\circ}$
 $V_L = 2V_{ph} \frac{\sqrt{3}}{2}$
 $V_L = \sqrt{3} V_{ph}$

1 mark for final ans

Thus Line voltage = $\sqrt{3}$ (Phase Voltage)