22510

24225

3 Hours / 70 Marks

Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answer with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- a) Write the SI unit of Thermal Conductivity.
- b) Give the expression for Prandtle Number and explain the terms.
- c) Write down the value of Stefan Boltzmann constant.
- d) Draw the cross flow arrangement used in heat exchangers.
- Define economy of an evaporator.
- Give the classification of Shell and Tube heat exchanger.
- Define forced convection.

22510 [2]

		Γ	Marks
2.		Attempt any THREE of the following:	12
	a)	State Fourier's law with mathematical expression.	
	b)	Compare Co-current and Counter current flow of heat exchanger.	
	c)	State and explain Kirchoff's law.	
	d)	Draw 2-4 Shell and Tube Heat Exchanger with following labels-	
		i) Shell	
		ii) Tubes	
		iii) Pass partition	
		iv) Baffle.	
3.		Attempt any THREE of the following:	12
	a)	Calculate the loss of heat by radiation from a steel tube of diameter 70 mm and 3 m long at a temperature of 500 k, if the tube is located in a square brick conduit 0.3 m side at 300 k.	
	b)	A hollow sphere has an inside surface temperature is 573 K and the outside surface temperature is 303 K. Find the heat loss by conduction for an inside diameter of 50 mm and outside diameter of 150 mm. $K = 17.45 \text{ w/m.k.}$	
	c)	Explain the construction and working of a heat exchanger which is used for a handling corrosive liquid.	
	d)	Answer with reason – Through which side of shell and Tube Heat Exchanger, The following liquids are directed –	
		i) Viscous liquid	
		ii) Corrosive liquid.	
4.		Attempt any THREE of the following:	12
	a)	Compare dropwise and filmwise condensation. (Any four)	
	b)	Derive the expression for rate of heat flow by conduction through a composite wall of different materials.	
	c)	Differentiate forward feed and Backward feed feeding arrangements in evaporators.	
	d)	Discuss the construction and working of double pipe heat exchanger.	

22510 [3]

Marks

e) List out the various properties which effects the evaporation operation.

5. Attempt any TWO of the following:

12

- a) Describe the relationship between overall and Individual heat transfer coefficient.
- b) 88 mm OD pipe is insulated with a 40 mm thickness of an insulation having a thermal conductivity of 0.057 w/m.k. and 30 mm thickness of an insulation having thermal conductivity of 0.042 w/m.k. If the temperature of the outer surface of pipe is 560 K and temperature of the outer surface of insulation 310 K. Calculate the heat loss per meter of pipe.
- c) A hot fluid enters a DPHE at a temperature of 423 K. and is to be cooled to 367 K by cold water entering of 311 K and heated to 339 K shall they be directed in parallel or counter current flow?

6. Attempt any TWO of the following:

12

- a) An evaporator is operating at atmospheric pressure. It is desired to concentrate a feed from 8% solute to 30% solute (by weight) at a rate of 10,000 kg/hr. Dry saturated steam at a pressure corresponding to the saturation temp. of 399 K is used. The feed is at 298K. and the b.p. rise is 6 k. The OHTH (U) is 2350 w/m²k. Calculate the economy of the evaporator and the area of heat transfer to be provided.
 - i) λ Condensation of steam at 399 k = 2185 kJ/kg.
 - ii) λ Vaporisation of water at 373 k = 2257 kJ/kg. Cp feed = 4.187 kJ/kg k.
- b) With neat sketch, explain construction and working of Calendria Evaporator.
- c) Determine the HTC for water flowing in a tube of 16 mm dia at a velocity of 3 m/s. The temp of the tube is 297 k and the water enters at 353 k. and leaves at 309 k.

Using -

- i) Dittus Bolter equation
- ii) Sider-Tate equation

Marks

Data given (Properties) of water at 331 k i.e. at arithmetic mean temp are $-\$

 $Q = 984.1 \text{ kg/m}^3$

Cp = 4187 J/kg.k

 μ = 485 \times 10⁻⁶ pa.s.

k = 0.657 w/(m.k.)

 μ water at 297 k = 920 \times 10⁻⁶ Pa.s