22502

24225

4 Hours / 70 Marks

Seat No.				

Instructions – (1) All Questions are Compulsory.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any \underline{FIVE} of the following :

10

- a) State the loads acting on steel structures as per IS 875-1987 part I to IV.
- b) State the components of steel water tank.
- c) Write the function of steel chimney.
- d) State types and sketch any one bolted joint.
- e) Define:
 - i) Nominal and
 - ii) Maximum shear stress in RCC.
- f) State the functions of distribution steel in RCC slab.
- g) State the necessity of lateral ties in RCC columns.

22502 [2]

2.

Attempt any \underline{THREE} of the following:

	a)	Enlist any four components with their functions for Gantry Girder.			
	b)	State various forms of shear reinforcements in beams and draw sketches any - 3.			
	c)	Calculate shear resisted by two bent up bars of 20 mm dia. for Fe415, $\alpha = 45^{\circ}$.			
	d)	Find development length of 16 mm dia. bar in tension and compression take $\tau bd = 1.2$ MPa, Fe 500.			
3.		Attempt any <u>TWO</u> of the following:	12		
	a)	i) Differentiate between balanced, over and under-reinforced section w.r. to Definition, strain, and depth of neutral axis.			
		ii) Draw stress block diagram for singly reinforced section.			
	b)	Calculate values of X_{umax} , M_{umax} and limiting value of percentage of steel for beam, take M25, Fe415.			
	c)	Find moment of resistance for 300 mm \times 500 mm effective beam section. If 6 bars of 12 mm dia. used. M20, Fe 500.			
4.		Attempt any TWO of the following:	12		
	a)	State any 3 advantages and disadvantages of –			
		i) Bolted Joints			
		ii) Welded Joints			
	b)	Design lap joint for 2-plates of size 100×8 mm to transmit 100 KN factored load using single raw of 16 mm dia. 4.6 grade bolts and plates 410 grade.			
	c)	Design suitable fillet weld for ISA. $80 \times 50 \times 8$ mm with its longer leg connected to gusset plate of 8 mm thick. Take factored load = 300 KN. $C_{xx} = 27.3$ mm. Assume weld applied to all three edges and shop weld.			

Marks

12

5. Attempt any TWO of the following:

12

- a) Design a one way slab of 3.3 m effective span. Take MF = 1.2, M20, Fe415 Live load = 3 KN/m^2 , FF = 1 KN/m^2 .
- b) Design cantilever slab for 1.2 m effective span, LL = 2 KN/m^2 , FF = 1 KN/m^2 , MF = 1.5, M20, Fe250.
- c) Design two way slab for 3.0×4.5 m room simply supported by 230 mm thick walls on four sides. Use MF = 1.4, LL = 2 KN/m², FF = 0.5 KN/m², M20 Fe415 grades.

$Ly / Lx = \alpha$	1.4	1.5		
αx	0.99	0.104		
αy	0.051	0.046		

6. Attempt any <u>TWO</u> of the following:

12

a) Design rectangular column for data:

Factored load = 3500 KN, unsupported length = L = 4.0 m, M 20, Fe 415, 1% steel.

- b) i) Calculate load carrying capacity of 400 mm² square column using 1% steel for M20 and Fe415 grades.
 - ii) Enlist types of BCC footing and sketch any one.
- c) Design RCC column footing with data:

Column size : 400×400 mm

Safe bearing capacity = 200 KN/m^2

Load on column = 1200 KN

M-20 Fe 415 calculate depth of footing as using any one criteria.

No other checks required.