24225

3 Hours / 70 Marks

~				
Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- a) Define mass density of fluid and state its unit.
- b) State types of impeller used in centrifugal pump with sketch. (Any two)
- c) State the Laws of Fluid Friction for Laminar Flow.
- d) Calculate the velocity of water flowing through pipe of area 2m² and Discharge through pipe is 0.3 m³/sec.
- e) Define the term Atmospheric pressure and Absolute pressure.
- Define viscosity and state its types.
- g) List the components of Hydroelectric power plant and write the function of surge tank in the plant.

2. Attempt any THREE of the following:

- a) A simple U-tube manometer is connected to pipe containing pressurize water. The height of water column is 0.4 m above the datum line in left limb. In right limb the rise of mercury column is 0.3 m above datum line. Find the pressure in the pipe.
- b) A circular gate having 2 m diameter is fitted in one of the vertical side of tank. The Depth of water in tank is 6 m. Gate is installed at bottom of tank. Calculate Total pressure and Centre of pressure.
- c) State the Bernoulli's theorem. What are the assumption's of Bernoulli's theorem?
- d) Explain with neat sketch showing all components the construction of orificemeter and write formula to find discharge using orificementer.

3. Attempt any THREE of the following:

12

- a) A venturimeter $30 \text{ cm} \times 15 \text{ cm}$ size is inserted in a vertical pipe carring water flowing in the upward direction. A differential mercury manometer is connected to inlet and throat, gives reading of 20 cm. Find the discharge through venturimeter. If the meter coefficient $C_d = 0.99$.
- b) Define with neat sketch. Hydraulic gradient line and Total energy line.
- c) Determine discharge through a pipe of diameter 200 cm when the difference of pressure head between two ends of pipe 500 m apart is 4 m of water (f = 0.009)
- d) A jet of water 12 cm diameter strikes on flat plate with velocity 20 m/sec normally. Also due to force of jet plate is moving with 4 m/sec in a direction of jet find
 - i) Force exerted by jet
 - ii) Work done by jet
- e) Draw a neat sketch of impact of Jet on inclined fixed plate and write the formula to determine force exerted by the Jet and state the meaning of each term.

[3]

Marks

4. Attempt any THREE of the following:

12

- a) Compare centrifugal pump and reciprocating pump in respect to
 - i) Working Principal
 - ii) List of components.
 - iii) Priming Process.
 - iv) Application based on Discharge and Head.
- b) What is draft tube used in turbine? Explain with neat sketch different types of draft tube.
- c) What is Priming? Explain with types of priming process in centrifugal pump.
- d) A Pelton wheel having semi-circular bucket and working under head of 140 m is running at 600 rpm the discharge through nozzle is 0.5 m³/s and diameter of wheel is 600 mm. Find power develop by nozzle and Hydraulic efficiency if Cv = 0.98.
- e) State any four faults and their remedies in centrifugal pump.

5. Attempt any TWO of the following:

12

- a) Draw a neat sketch of Francis turbine, label and write functions of following components.
 - i) Scroll Casing
 - ii) Runner
 - iii) Draft tube
 - iv) Vanes
- b) Compare Pelton wheel turbine, Francis turbine and Kaplan turbines based on
 - i) Discharge, Head available
 - ii) Intake and exit of water through turbine
 - iii) Energy available at inlet of turbine.
- c) Find the maximum power that can be transmitted by a power station through a pipe 3 km long and 0.2 m diameter. The pressure at power station is 60 bars (f = 0.078).

Marks

6. Attempt any TWO of the following:

12

a) What is Air vessel? Explain the function of Air vessel in Reciprocating Pumps. Sketch the system showing air vessel for single acting reciprocating pump.

[4]

- b) Explain with sketch principle, construction and working of pitot tube. Write formula to find velocity in pitot tube with meanings.
- c) A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1200 rpm works against the total head of 45 m the velocity of flow through the impeller is constant and equal to 2.5 m/s. the vanes are set-back at an angle of 40° at outlet. If the outer diameter of impeller is 500 mm and width at outer is 50 mm. Determine.
 - i) Vane angle at inlet
 - ii) Work done by impeller
 - iii) Manometric efficiency
