22337

24225

3 Hours / 70 Marks

Seat No.				

Instructions – (1) All Questions are Compulsory.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answer with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
- (8) Use of Steam tables, logarithmic, Mollier's chart is permitted.

Marks

1. Attempt any FIVE of the following:

10

- State Zeroth law of thermodynamics.
- b) Define –
 - i) Dryness fraction
 - ii) Degree of superheat.
- Differentiate between Heat and work. (Any two points)
- List any four applications of steam nozzles.
- Explain bleeding of steam. e)
- State Dalton's law of partial pressure. f)
- Define Fourier's law of thermal conduction.

22337

Г	\mathbf{a}	П	
ı	Z	- 1	
	_	- 1	

223	51		
			Marks
2.		Attempt any THREE of the following:	12
	a)	Write steady flow energy equation and apply it to -	
		i) Boiler	
		ii) Nozzle.	
	b)	Differentiate between Adiabatic process and Isothermal process	•
	c)	Determine the amount of heat required to convert 2 kg of water at 25°C into steam at 5 bar and having 90% dry.	r
		(Take Cp for water = $4.187 \text{ kJ/Kg}^{\circ}\text{k}$)	
		From steam table –	
		At - 5 bar	
		i) $hf = 640.1 \text{ kJ/kg}$	
		ii) $hfg = 2107.4 \text{ kJ/kg}.$	
	d)	Explain the regenerative feed heating with neat sketch.	
3.		Attempt any THREE of the following:	12
	a)	Represent following process on	
		P-V and T-S diagram -	
		i) Isobaric Process	
		ii) Isochoric Process.	
	b)	Two kg of gas at 50°C is heated at constant volume until the pressure is doubled. Determine –	2
		i) Final temperature	
		ii) Change in internal energy.	
		(Take $Cv = 0.718 \text{ kJ/kg}$)	
	c)	State the function of –	
		i) Fusibal plug	
		ii) Economiser	
		iii) Air preheater	

iv) Blow off cock.

22337 [3]

Viarks

- d) Classify steam turbine with respect.
 - i) Action of steam over moving blade.
 - ii) Expansion stages.
 - iii) Pressure of steam entering.
 - iv) Exhaust steam pressure.

4. Attempt any THREE of the following:

12

- a) State Extensive property and Intensive property with two examples of each.
- b) A fluid expands from its initial condition of pressure 5 bar and volume 0.05 m³ to final volume of 0.15m³. It is carried out at constant temperature, then calculate
 - i) Final pressure
 - ii) Work done.
- c) Differentiate between fire tube boiler and water tube boiler. (Any four)
- d) Explain with neat sketch construction of surface condensor.
- e) Define
 - i) Transmissivity
 - ii) Reflectivity
 - iii) Black body
 - iv) Grey body.

5. Attempt any <u>TWO</u> of the following:

12

- a) State Boyle's law and Charle's law and derive characteristic gas equation using above law.
- b) State necessity of compounding of steam turbine. Explain with neat sketch pressure compounding.

22337 [4]

Marks

c) In a surface condenser test the following observation were made –

Vacuum in condenser = 700 mm of Hg

Barometric pressure = 765 mm of Hg.

Mean temperature of condensation = 36.16°C.

Inlet temperature of cooling water = 17°C.

Outlet temperature of cooling water = 32°C.

Calculate -

- i) Vacuum efficiency
- ii) Condenser efficiency.

6. Attempt any TWO of the following:

12

- a) Explain with neat sketch construction and working of impulse turbine.
- b) Explain with neat sketch construction and working of Loeffler boiler.
- c) A wall of refrigerated van of 1.5 mm of steel sheet at outer surface, 10 mm plywood at the inner surface and 2 cm of glass wood in between. Calculate the rate of heat flow if the temperature at the inside and outside surface -15°C and 24°C.

Take -

K (for steel) = $23.2 \text{ w/m}^{\circ}\text{k}$

K (for glass wood) = $0.14 \text{ w/m}^{\circ}\text{k}$

K (Plywood) = $0.052 \text{ w/m}^{\circ}\text{k}$.