24225

3 Hours / 70 Marks

Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answer with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- a) Define
 - i) Admittance
 - ii) Conductance
- b) Draw the phasor diagram of R-L series circuit.
- c) Define Q factor for series RLC circuit.
- d) Write the formula for delta to star conversion.
- e) Draw
 - i) Ideal voltage source
 - ii) Practical current source.
- f) State maximum power transfer theorem.
- g) Write equation of open circuit Z parameters.

2. Attempt any THREE of the following:

- a) Draw circuit of series R-C circuit, its phasor diagram, waveform of voltage and current in the circuit.
- b) Compare series and parallel resonance on the basis of
 - i) Resonant frequency
 - ii) Impedance
 - iii) Current
 - iv) Magnification.
- c) Write steps to convert practical voltage source into practical current source.
- d) State superposition theorem. Write steps to find current in an element using superposition theorem.

3. Attempt any THREE of the following:

12

- a) Explain concept of initial and final condition in switching circuits for elements R and L.
- b) Drive expression for resonant frequency of R-L-C series circuit.
- c) Find the current in 6Ω resistor in the circuit shown in Figure No. 1 using mesh analysis.

Fig. No. 1

d) State the condition for maximum power transfer theorem. Write steps to find current in the load by maximum power transfer theorem.

4. Attempt any THREE of the following:

- a) A series resistance of 20Ω , inductance of 0.2H and capacitance of $100~\mu F$ are connected in series across a 220~V,~60~Hz supply. Determine
 - i) Impedance
 - ii) Current
 - iii) Active power
 - iv) Apparent power.
- b) An R-C series circuit consists of R = 10Ω and C = $200~\mu F$. It is connected across 250 V, 50 Hz 1ϕ AC supply. Calculate the value of power consumed by the circuit.
- c) Two impedances $Z_1 = 10 + j5$ and $Z_2 = 8 + j9$ are connected in parallel across a voltage source of V = 200 + j0. Calculate the circuit current and branch currents. Draw the vector diagram.
- d) Using source transformation technique find resultant current I through the circuit given in Figure No. 2.

e) Find the current in 100Ω resistance of Figure No. 3 using superposition theorem.

Fig. No. 3

5. Attempt any TWO of the following:

- A circuit having a resistance of 5Ω , inductance of 0.4 H and capacitance in series connected across 100 V, 50 Hz supply. Calculate
 - i) Value of capacitance to give resonance
 - ii) Impedance
 - iii) Current at resonance
 - iv) Voltage across resistor
 - v) Voltage across inductor
 - vi) Q factor of resonance.
- b) Find current through 6Ω resistor in circuit given in Figure No 4 using Thevenin's theorem.

Fig. No. 4

- c) Draw the two port network and determine the indicated parameter for the following configuration
 - i) Cascade configuration
 - ii) Series configuration
 - iii) Parallel configuration.

6. Attempt any <u>TWO</u> of the following:

12

a) Find current in 40Ω and 10Ω resistor in circuit given in Figure No. 5 using nodal analysis method.

Fig. No. 5

b) Verify the reciprocity theorem for the network given in Figure No. 6.

Fig. No. 6

c) Find Z parameters for the network given in Figure No. 7.

Fig. No. 7