22224

24225

3 Hours / 70 Marks

Instructions - (1) All Questions are Compulsory.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any FIVE of the following:

10

- a) If $f(x) = x^4 2x + 7$ then find f(0) + f(2).
- b) If $f(x) = \frac{e^x + e^{-x}}{2}$ state whether function f(x) is even or odd.
- c) Find $\frac{dy}{dx}$ if $y = x \cdot \sin x$
- d) Evaluate $\int \sqrt{\frac{1-\cos 2x}{1+\cos 2x}} dx$
- e) Evaluate $\int \frac{dx}{3x+4}$
- f) Find the area bounded by the curve $y = 3x^2$ and the ordinates x = 1 and x = 3.
- g) Find the real root of the equation $x^3 x 1 = 0$ by using Bisection method in one iterations only.

22224

[2]

Marks

2. Solve any THREE of the following:

12

- a) Find $\frac{dy}{dx}$ if $x^2 + y^2 + xy y = 0$ at (1, 2)
- b) If $x = a(1 \sin \theta)$, $y = a(1 \cos \theta)$ find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$
- c) Find maximum and minimum values of $x^3 18x^2 + 96x = 0$.
- d) Find radius of curvature of curve $\sqrt{x} + \sqrt{y} = 1$ at $(\frac{1}{4}, \frac{1}{4})$.
- 3. Solve any THREE of the following:

12

- a) Find the equation of tangent and normal to the curve y = x(2-x) at (2, 0)
- b) Find $\frac{dy}{dx}$ if $y = (\sin x)^x + (x)^{\sin x}$
- c) If $x^y = e^{(x-y)}$ then show that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.
- d) Evaluate $\int 3x \cdot \sqrt{x^2 + 4} \, dx$.
- 4. Solve any THREE of the following:

12

- a) Evaluate $\int \frac{dx}{\sqrt{x^2 6x + 13}}$
- b) Evaluate $\int \frac{dx}{4-5\cos x}$
- c) Evaluate $\int \frac{dx}{x(2 + \log x)(3 + \log x)}$
- d) Evaluate $\int x \cdot \tan^{-1} x \, dx$
- e) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\tan x}}$

22224

[3]

Marks

5. Solve any TWO of the following:

12

- a) Find the area of region included between the parabola $y = x^2 + 1$ and line y = 2x + 1.
- b) Solve the following
 - i) Solve $\frac{dy}{dx} + y \tan x = \cos^2 x$
 - ii) Form the differential equation by eliminating arbitrary constants if $y = Ae^{3x} + Be^{-3x}$
- c) If $L \frac{di}{dt} = 30 \sin(10\pi t)$ find 'i' in terms of t, given that L = 2, i = 0, t = 0.
- 6. Solve any <u>TWO</u> of the following:

12

- a) Solve the following
 - Solve the following system of equations by using Gauss-Seidal method upto two iterations 20x + y 2z = 17, 3x + 20y z = -18, 2x 3y + 20z = 25.
 - ii) Solve the following system of equations by Jacobi's method upto two iterations 5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20.
- b) Solve the following system of equations by Gauss Elimination method

$$x + 2y + 3z = 14$$
, $3x + y + 2z = 11$, $2x + 3y + z = 11$

c) Using Newton's Raphsons method find the approximate root of the equation $x^3 - 4x + 1 = 0$ up to four iteration.