22201

24225

03 Hours / 70 Marks

Seat No.

Instructions - (1) All Questions are Compulsory.

- (2) Answer each next main Question on a new page.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any <u>FIVE</u> of the following:

10

- a) Define Even and Odd function.
- b) $f(x) = x^3 + x^2 2$ find f(1) f(2)
- c) Find $\frac{dy}{dx}$ if $y = x \cdot \tan x$
- d) Evaluate : $\int \frac{dx}{1 + \cos 2x}$
- e) Evaluate : $\int x^2 \log x \, dx$
- f) Find the area bounded by the curve $y = \sin x$ and the X axis from x = 0 to $x = \pi$.
- g) State Simpson's $(\frac{3}{8})$ th rule of numerical integration.

22201

[2]

Marks

2. Solve any THREE of the following.

12

- a) If $y = (\cos x)^{\sec x}$, find $\frac{dy}{dx}$
- b) Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3a xy$
- c) The rate of working of an engine is given by the expression $10 \text{ v} + \frac{4000}{\text{v}}$, where v is the speed of the engine. Find the speed at which the rate of working is the least.
- d) Find the radius of curvature to the curve $y = x^3$ at (2, 8).
- 3. Solve any THREE of the following:

12

- a) Find the equation of tangent and normal to the curve $y = x^2 + 4x + 1$ at (-1, -2).
- b) If $x = \log(\sec \theta + \tan \theta)$, $y = \sec \theta$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$.
- c) If $y = \tan^{-1} \left[\frac{x}{1 + 12x^2} \right]$ find $\frac{dy}{dx}$
- d) Evaluate : $\int \frac{x^2 \cdot \tan^{-1}(x^3)}{1 + x^6} dx$.
- 4. Solve any <u>THREE</u> of the following:

12

- a) Evaluate : $\int \frac{1}{\sqrt{21+4x-x^2}} dx$
- b) Evaluate : $\int \frac{1}{5 + 7\cos 2x} dx$
- c) Evaluate : $\int x^3 \cdot e^{x^2} dx$
- d) Evaluate : $\int \frac{1}{(x+1)(x+2)(x+3)} dx$
- e) Evaluate : $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$

22201

5. Solve any TWO of the following:

12

- a) Find the area of the circle $x^2 + y^2 = r^2$ using integration.
- b) i) Form the Differential equation of : $y = A \cos 5x + B \sin 5x$, where A and B are arbitrary constants.
 - ii) Solve: $\frac{dy}{dx} = 1 + x + y + xy$
- c) The circular column of radius 'x' and having depth 'y' supports a load. The equation of equilibrium is $2 \frac{dx}{dy} Kx = 0$ where K is constant. Find the relation between x and y.
- 6. Solve any TWO of the following:

12

a) i) Given:

x:	0	$\pi/8$	$\pi/4$
tanx:	0	0.4141	1

Evaluate : $\int_{0}^{\frac{\pi}{4}} f(x) dx$ using Trapezoidal rule.

ii) Evaluate : $\int_{0}^{4} e^{x} dx$ using Simpson's one - third rule by dividing the interval (0, 4) into four equal parts.

Given: e = 2.72, $e^2 = 7.39$, $e^3 = 20.09$, $e^4 = 54.60$

b) Using Simpson's one-third rule,

Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \ dx$. Divide the interval into eight equal sub-intervals.

c) Evaluate : $\int_{0}^{8} e^{x} dx$ using Simpson's $(\frac{3}{8})^{th}$ rule, taking n = 8

Given : e = 2.72