24225 3 Hours / 70 Marks

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Assume suitable data, if necessary.
- (4) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- (a) Evaluate $\log_5 625$.
- (b) Find the area of triangle whose vertices are (3, 1) (-1, 3) and (-3, -2).
- (c) Without using calculator find the value of sin (15°).
- (d) Find the area of rhombus whose diagonals have lengths 40 cm and 70 cm.
- (e) A cone has a circular base of radius 10 cm and slant height of 30 cm. Calculate the surface area.
- $(f) \quad \mbox{ Find range and coefficient of the range of the data:} \\$

50, 90, 120, 40, 180, 200, 80.

(g) If the coefficient of variation of a distribution is 75% and standard deviation is 24. Find its mean.

[1 of 4] P.T.O.

12

12

12

2. Attempt any THREE of the following:

(a) If
$$A = \begin{bmatrix} 2 & 5 & 6 \\ 0 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 1 \\ 0 & 4 \\ 5 & 7 \end{bmatrix}$, verify that $(AB)^T = B^T \cdot A^T$.

- (b) Using Cramer's rule solve x y 2z = 1, 2x + 3y + 4z = 4, 3x 2y 6z = 5.
- (c) Resolve into partial fractions $\frac{x-5}{x(x+3)(x-2)}$.
- (d) Find mean of the following data:

Class interval	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50
Frequency	3	5	8	3	1

3. Attempt any THREE of the following:

- (a) If $A + B = \frac{\pi}{4}$, then show that $(1 + \tan A)(1 + \tan B) = 2$.
- (b) Prove that $\frac{\cos 3A + 2\cos 5A + \cos 7A}{\cos A + 2\cos 3A + \cos 5A} = \cos 2A \tan 3A \cdot \sin 2A.$
- (c) If $\cos A = 0.4$, find $\cos (3A)$.

(d) Prove that
$$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \cot^{-1}\left(\frac{9}{2}\right)$$
.

4. Attempt any THREE of the following:

(a) If
$$\begin{cases} 3 & 1 \\ 4 & 0 \\ 3 & -3 \end{cases} - 2 \begin{bmatrix} 0 & 2 \\ -2 & 3 \\ -5 & 4 \end{bmatrix} \begin{cases} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, then find x, y and z.

(b) Resolve into partial fractions:

$$\frac{x^2 + 23x}{(x^2 + 1)(x + 3)}$$

- (c) Prove that : $\sin(20^\circ) \cdot \sin(40^\circ) \cdot \sin(60^\circ) \cdot \sin(80^\circ) = \frac{3}{16}$.
- (d) Prove that : $\frac{1 tan2A \cdot tanA}{1 + tan2A \cdot tanA} = \frac{cos3A}{cosA}.$
- (e) If $\cos A = \frac{-3}{5}$, $\sin B = \frac{20}{29}$, A and B are in the 3rd and 2nd quadrant. Find $\tan (A + B)$.

5. Attempt any TWO of the following:

- (a) (i) Find the equation of the line passing through the points (-4, 6) and (8, -3).
 - (ii) Find the perpendicular distance between the point (3, 2) and the line 4x 6y 5 = 0.
- (b) (i) Find the acute angle between the lines 3x y = 4 and 2x + y = 3.
 - (ii) Find the equation of line passing through the point of intersection of line 2x + 3y = 13 and 5x y = 7 and perpendicular to the line 3x y + 7 = 0.
- (c) (i) Find the capacity of a cylindrical water tank whose radius is 2.1 m and height 5 m.
 - (ii) A garden is of the form of a rectangle 12 m × 10 m in which the width1 metre surrounds the garden. Find the actual area of the garden.

6. Attempt any TWO of the following:

(a) Using matrix inversion method, solve the equations :

$$x + 3y + 2z = 6$$
; $3x - 2y + 5z = 5$ and $2x - 3y + 6z = 7$.

(b) Find mean, standard deviation and coefficient of variance of the following data:

Wages in ₹	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50
No. of students	3	9	15	8	3

12

12

(c) (i) Find the range and coefficient of range for the following data:

Marks	1 – 10	11 – 20	21 – 30	31 – 40	41 – 50
No. of students	5	8	12	8	7

(ii) Two factories A and B are engaged in the same industry, in their area the average weekly wages (in ₹) and the S.D. are as follows:

Factory	Average Wages	S.D.
A	34.5	5.0
В	28.5	4.5

Which factory is more consistent?