314337

24225 03 Hours / 70 Marks Seat No.

Instructions - (1) All Questions are Compulsory.

- (2) Answer each next main Question on a new page.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- a) Draw the general block diagram of closed loop control system.
- b) State Routh's stability criterion.
- c) Compare PD and PID controllers. (Two points)
- d) List different modes of control action.
- e) Give application of rotary encoder.
- f) Define servo system. Draw its Block diagram.
- g) List practical applications of control system. (Any two)

2. Attempt any THREE of the following:

12

- a) List any four rules of block diagram reduction technique.
- b) Sketch output time response relationship of second order system for step input. Define rise time and peak time.
- c) Determine the stability of the system having characteristics equation:

$$s^4 + 2s^3 + 8s^2 + 4s + 3 = 0$$

d) Draw the block diagram of process control system. State function of each block.

1	1	1	1	1	\neg
1		4	1	1	/
J	1	- 1	J	$\boldsymbol{\mathcal{I}}$,

Marks

3. Attempt any THREE of the following:

12

a) For a given transfer function $\frac{C(S)}{R(S)} = \frac{10(S+8)}{S(S+4)(S-3)}$

Find

- i) Poles
- ii) Zeros
- iii) Plot them on S-plane
- iv) Characteristics equations.
- b) Define:
 - i) Absolute stability
 - ii) Relative stability

Draw the location of poles in s-plane for stability analysis.

- c) Define on-off controller. Describe its working principle.
- d) List the types of stepper motor and give four applications of stepper motor.

4. Attempt any THREE of the following:

12

- a) Compare open loop and closed loop control system. (Any four points)
- b) Write the Laplace transform for the following input signal. Draw the signals
 - i) Step
 - ii) Ramp
 - iii) Parabolic
 - iv) Impulse
- c) Determine stability of the system having characteristics equation

$$s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$$

- d) Describe PID controller with neat diagram, output equation.
- e) Differentiate between linear and non linear control system.

1	1	11	າາ	_
•		4	4 4	. /
J	1	т,	ノン	-/

Marks

5. Attempt any TWO of the following:

12

a) For unity feedback system the transfer function is

$$\frac{25}{s^2+6s+25}$$

Find

- i) Rise time
- ii) Peak time
- iii) Settling time
- b) For system, characteristic equation is $s^4 + 22s^3 + 10s^2 + s + K = 0$ Using Routh's Criteria calculate range of K for system to be stable.
- c) Explain working of potentiometer as an error detector. Give any two applications.

6. Attempt any TWO of the following:

12

a) Derive transfer function of the given circuit. (Refer Fig. No. 1)

Fig. No. 1

Marks

- b) Define following terms:
 - i) Damping
 - ii) Damping ratio
 - iii) Undamped natural frequency
 - iv) Damped frequency
 - v) Poles
 - vi) Zeros
- c) Differentiate between Stepper Motor and DC Servomotor (six points)