314309

24225

3 Hours / 70 Marks

Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- a) Define the term activation energy.
- b) Give general material balance equation for a chemical reactor.
- c) State any four characteristic of catalyst in catalytic reaction.
- Draw symbollic diagram with labelling of PFR in (i) series and in (ii) parallel arrangement.
- e) Derive $t\frac{1}{2} = C_{Ao/2}k$ for zero order reaction.
- Give any four name of catalyst used in catalytic reaction. f)
- State the different methods to analyse the rate data to determine order of reaction.

314309 [2]

2.		Attempt any THREE of the following:	12
	a)	Explain properties of catalyst :-	
		i) Activity	
		ii) Specificity	
		iii) Crystalline structure	
		iv) Kindling point	
	b)	Derive the performance equation of constant volume mixed flow reactor/CSTR.	
	c)	Liquid 'A' decomposes by first order kinetics and in a batch reactor 50% of A is converted in 5min, how long will it take to reach 75% conversion.	
	d)	The rate constant of a reaction at 27°C is $1.3 \times 10^{-3} (S^{-1})$. Determine the frequency factor. Take E = 12817 cal/mol.	
3.		Attempt any THREE of the following:	12
	a)	Give the stepwise procedure of integral method of analysis of rate data.	
	b)	Explain any two methods of preparation of catalyst.	
	c)	At 25°C, the rate constant for the hydrolysis of ethyl acetate by NaOH is 6.5 (l/mol).(Min ⁻¹) starting with concentration of base and ester of 0.03 mol/l of each. What proportion of ester will be hydrolysed in 10 min?	
	d)	State advantages and disadvantages of CSTR.	

Marks

4. Attempt any THREE of the following:

- 12
- a) The half life for the conversion of ammonium cynate into urea at 303 k at initial concentrations of ammonium cynate of 0.1 mol/l and 0.2 mol/l are 1152 min and 568 min, respectively. What is the order of reaction.
- b) Differentiate between Elementary and non elementary reaction (any four points).
- c) Explain the method of feeding when plug flow rectors are connected in parallel.
- d) Explain the terms space time and space velocity with their units.
- e) Calculate the first order rate constant for the disappearance of A as per the gas phase reaction $A \rightarrow 1.6\,R$ if the volume of the reactions mixture starting with pure A increases by 50% in 4min. The total pressure of the system remains constant at 1.2 atm and the temperature is 25°C.

5. Attempt any <u>TWO</u> of the following:

12

- a) Explain the temperature dependency of rate constant from collision theory.
- b) It is proposed to operate a batch reactor for converting A into R. This is a liquid phase reaction with the stoichiometry $A \rightarrow R$. How long must we react each batch in order to drop the concentration from $C_{A_0} = 1.3$ mol/l to $C_{A_f} = 0.3$ mol/l. The rate Vs concentration data are as given below.

L	11 '										1.3	
	-r _A (mol/1.min)	0.1	0.3	0.5	0.6	0.5	0.25	0.10	0.06	0.05	0.045	0.042

c) Derive equation for size comparison between CSTR and PFR.

314309

Marks

6. Attempt any TWO of the following:

12

- a) Explain the procedure to determine the best system for achieving desired conversion for different size CSTR in series.
- b) In studying the kinetics of decomposition of a reaction, the concentrations of reactants were determined analytically at different times. The following results were obtained.

Time, min	0	10	20	40	100	125
conc, mol/l	0.10	0.0714	0.0556	0.0385	0.02	0.0167

Determine the order and rate constant for the reaction.

c) A specific enzyme acts as catalyst in the fermentation of substrate A (reactant). At a given enzyme concentration in the aqueous feed stream of 25 l/min, determine the size of plug flow reactor needed to achieve 95% conversion of reactant A $C_{A_0} = 2 \text{ mol/l}$. The kinetics and stoichiometry of fermentation reaction are given by

$$A \xrightarrow{enzyme} R, -r_A = \frac{0.10 C_A}{1+0.5 C_A} \text{ (mol/l min)}$$