313303

24225

3 Hours / 70 Marks

Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answer with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- Write the base of the following number systems. Decimal, Binary, Octal and Hexadecimal.
- b) Draw symbol and write the truth table of NAND gate.
- c) State the necessity of multiplexer.
- d) Write excitation table of T-Flip-Flop.
- e) List any four features of SSD memory.
- f) Design half subtractor circuit.
- State the difference in logic of EX-OR and EX-NOR gate.

313303	[2]	

31330)	[2]	Marks
2.	A	ttempt any THREE of the following:	12
a) C	onvert the following –	
	i)	$(429)_{10} = (?)_{BCD}$	
	ii)	$(2.45)_{10} = (?)_2$	
	111	$(AF)_{16} = (?)_8$	
	iv	$(1011010)_2 = (?)_{16}$	
b) St	ate and prove De Morgan's theorems.	
c	/	escribe function of full adder circuit with its truth table map simplification and logic diagram.	,
d) W	That is modulus of counter? Design MOD-7 counter.	
3.	A	ttempt any THREE of the following:	12
a) W	That is Race around condition? How can it be overcome?	
b	_	ealize the logic operations of AND, OR, NOT gates using ally NAND gates.	3
c)) D	esign 16:1 multiplexer using 4:1 multiplexers.	
d	_	raw the block diagram and explain the working of successive oproximation method of ADC.	e
4.	A	ttempt any THREE of the following:	12
a)		ate Duality theorem. Prove that AND laws and OR laws are ual of each other.	e
b		ive any two specifications of DAC. Draw the circuit diagram weighted resistor DAC and give the expression for output	
c		raw the logical circuit diagram of BCD to 7-segment decode and write its truth table.	r
d	-	ompare weighted resistor DAC and R-2R DAC. (Any four pints)	r
e)) M	linimize the following expression using K-map.	
	F	$(A, B, C, D) = \pi (1, 4, 6, 9, 11, 12, 14, 15).$	

313303 [3]

]	Marks		
5.		Attempt any TWO of the following:	12		
	a)	Define SOP form and POS form of Boolean expression. Convert $F(A, B, C) = \Sigma m(1, 4, 5, 6, 7)$ in standard POS form.			
	b)	Design a mod-10 asynchronous counter. Draw the timing diagram.			
	c)	Compare combinational and sequential logic circuit. (Any six points)			
6.		Attempt any <u>TWO</u> of the following:	12		
	a)	Design 3-bit synchronous counter and draw output waveform.			
	b)	Compare the following. (Any three points) -			
		i) Volatile with Non-volatile memory			
		ii) SRAM with DRAM memory.			
	c)	Convert the following –			
		i) $(5C7)_{16} = (?)_{10}$			
		ii) $(2598)_{10} = (?)_{16}$			
		iii) $(10110)_2 = (?)_{10} = (?)_{16}$.			