312312

24225 3 Hours / 70 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are *compulsory*.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- (a) Define Statics and Dynamics.
- (b) State Lami's theorem.
- (c) Define Centroid and Centre of gravity.
- (d) Define Force and state its S.I. unit.
- (e) Define angle of Repose.
- (f) State ideal machine and write its any two characteristics.
- (g) Define effort and load.

[1 of 8] P.T.O.

312312 [2 of 8]

2. Attempt any THREE of the following:

(a) For a certain machine, V.R. is 140. To lift a load of 10 kN, an effort of 100 N is required. Calculate the effort required to lift a load of 45 kN.

12

12

- (b) For a simple lifting machine the law of machine is P = (0.08 W + 5) N. Calculate the effort required to lift a load of 5 kN. Also calculate the max. M.A. and identify the machine type when V.R. = 20.
- (c) In a single purchase crab length of effort handle is 40 cm; diameter of load drum = 20 cm, number of teeth in pinion = 16 nos, number of spur = 80 nos. Find (i) Velocity Ratio (ii) Effort required to raise (lift) load of 2 kN with efficiency of 75%.
- (d) Explain law of machine. State its use.

3. Attempt any THREE of the following:

(a) A weight of 100 N is attached by two string. Calculate the tension in the string. Use the following Fig.-1

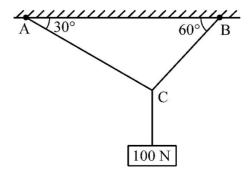


Fig. - 1

312312 [3 of 8]

(b) Find the support reaction for the given simply supported beam. (Ref. Fig.-2)

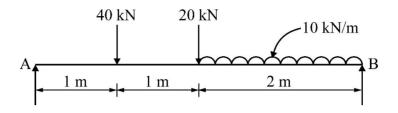


Fig. - 2

(c) Find the reaction at roller and hinge support of a beam loaded as shown in Fig.-3.

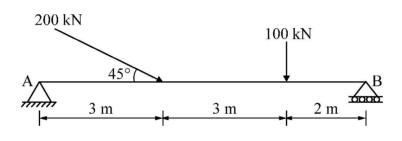
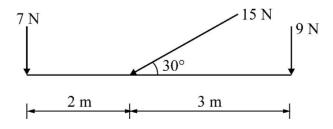



Fig. - 3

(d) Explain the term Free Body Diagram with the help of neat sketch.

4. Attempt any THREE of the following:

(a) Determine the resultant of coplanar non-concurrent forces as shown in Fig.-4.

Fig. – 4

12

312312 [4 of 8]

(b) A block is weighing 1000 N, resting on a horizontal plane requires a pull of 400 N to start its motion, when applied at an angle of 30° with the horizontal. Find the coefficient of friction, alongwith normal reaction, force of friction and resultant reaction (Total reaction). Refer Fig.-5.

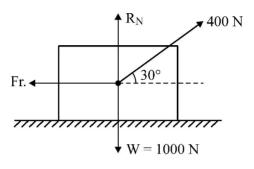
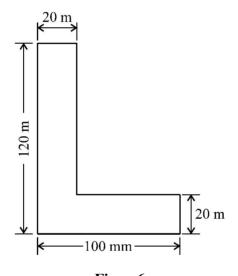



Fig. - 5

(c) Locate the position of centroid for the following L-section (Ref. Fig.-6):

Fig. – 6

(d) Find the resultant of parallel forces as shown in Fig.-7 by graphical method and show its position.

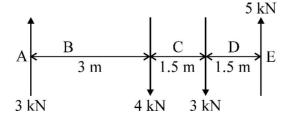
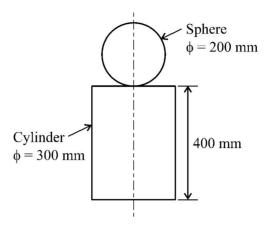



Fig. - 7

312312

[5 of 8]

(e) Locate the centre of gravity for the solid as shown in Fig.-8.

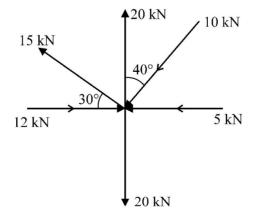


Fig. – 8

5. Attempt any TWO of the following:

12

- (a) A block of weight 450 N is placed on rough inclined plane making inclination of 20° with horizontal. If $\mu = 0.24$, calculate the value of force to be applied parallel to the plane just to move the block up the plane.
- (b) Find the resultant of concurrent force system as shown in Fig.-9. Magnitude and direction by analytical method.

Fig. – 9

312312 [6 of 8]

(c) Calculate the moment about point A and point B for the force system shown in Fig.-10.

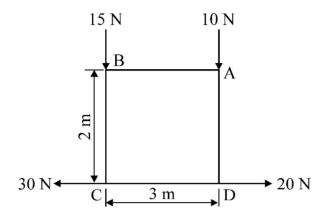


Fig. - 10

6. Attempt any TWO of the following:

(a) Calculate the coefficient of friction, if a block weighing 600 N; resting on a rough horizontal plane can be moved by a force of 150 N applied at an angle of 60° with the horizontal (Ref. Fig.-11).

12

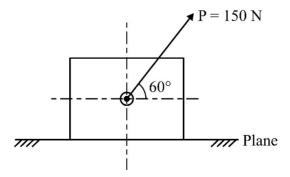


Fig. - 11

312312

[7 of 8]

(b) Find the centroid of the area as shown in Fig.-12.

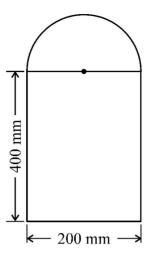


Fig. – 12

(c) Find the centroid of an inverted T-section from the bottom, if flange is (60×10) cm and web is (10×60) cm.

[8 of 8]