311302

24225

3 Hours / 70 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

1. Attempt any FIVE of the following:

10

- (a) Find 'x', if $\log_3 (x + 5) = 4$.
- (b) Without using calculator, find value of cos 75°.
- (c) Find slope and intercepts of the line 3x + 4y = 12.
- (d) Find $\frac{dy}{dx}$, if $y = x^{10} + 10^x + e^x + a^a$.
- (e) Find slope of tangent to the curve $y = x^3$ at x = 4.
- (f) If $f(x) = x^4 2x + 7$, then find f(0) + f(2).
- (g) Find range and coefficient of range of data: 45, 42, 39, 40, 48, 41, 45, 44.

2. Attempt any THREE of the following:

12

(a) If
$$A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$$
, show that $A^2 - 8A$ is a Scalar matrix.

(b) Find x, y if
$$\left\{ 4 \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 3 & -1 \\ 2 & -3 & 4 \end{bmatrix} \right\} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
.

- (c) Resolve into partial fraction : $\frac{x+3}{(x+1)(x+5)}$.
- (d) If $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{3}$, find $\tan (A + B)$.

3. Attempt any THREE of the following:

- (a) Prove that $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta.$
- (b) Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$.
- (c) Find the equation of the line passing through the point (3, 4) and perpendicular to the line 2x 4y + 5 = 0.

12

12

(d) Calculate the mean deviation about mean of the following data:

4. Attempt any THREE of the following:

- (a) Find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$, if $x = a \cos \theta$, $y = b \sin \theta$.
- (b) If $x^y = e^{x y}$, show that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.
- (c) If $y = \tan^{-1} \sqrt{\frac{1 \cos 2x}{1 + \cos 2x}}$, then find $\frac{dy}{dx}$.

(d) Find range and coefficient of range of following data:

Marks	10-19	20-29	30-39	40-49	50-59	60-69
No. of Students	6	10	16	14	8	4

(e) The data of run scored by two batsmen A and B in five one day matches is given below:

Batsmen	Average run scored	S.D.
A	44	5.1
В	54	6.31

Which batsman has greater variability?

5. Attempt any TWO of the following:

12

(a) Solve the following equations by matrix inversion method:

$$x + 3y + 3z = 12;$$

$$x + 4y + 4z = 15;$$

$$x + 3y + 4z = 13$$

(b) (i) If $A = 30^{\circ}$, verify that $\sin 2A = 2 \sin A \cdot \cos A$.

(ii) Prove that
$$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$$
.

(c) (i) Find acute angle between the lines 3x + 2y + 4 = 0 and 2x - 3y - 7 = 0.

(ii) Find perpendicular length from point (5, 4) on the straight line 2x + y = 34.

6. Attempt any TWO of the following:

12

(a) Calculate the mean, S.D. and coefficient of variance of the following data :

C.I.	0-10	10-20	20-30	30-40	40-50
Frequency	3	5	8	3	1

311302 [4 of 4]

- (b) A metal wire 100 cm long is bent to form a rectangle. Find its dimension when its area is maximum.
- (c) A telegraph wire hangs in the form of curve $y = a \log \left[\sec \left(\frac{x}{a} \right) \right]$, where 'a' is constant. Show that radius of curvature at any point is a $\sec \left(\frac{x}{a} \right)$.