17350

21819

3 Hours / 100 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Commnication devices are not permissible in Examination Hall.

1. Attempt any TEN of the following: 20
a) Differentiate between statics and dynamics.
b) State principle of tranmissibility of force.
c) State the analytical conditions of equilibrium for concurrent force system.
d) Define Lami's theorem.
e) List out types of loads.
f) Define angle of repose.
g) Define centre of gravity.
h) Locate C.G of a hemisphere of diameter 150 mm .
i) Define self-locking machine and give it's condition.
j) State the concept of ideal machine.
k) Define stress and strain.
1) State Hooke's law of eleasticity.
m) Define mechanical advantage and velocity ratio.
n) State any four mechanical properties of material.
2. Attempt any FOUR of the following:
a) Resolve a force of 60 N acting horizontal in two directions on either side at an angle of 30° each.
b) Resolve each of the following forces into orthogonal components.
(i) 350 N acting South-West away.
(ii) 40 N acting 40° West of South away.
c) Two forces acting at and away from the point have magnitudes of 20 kN and 25 kN respectively having an included angle of 60°. Find their resultant in magnitude and direction.
d) Calculate magnitude and direction of resultant for concurrent force system as shown in Fig. No.1.

Fig. No. 1
e) Write four characteristics of couple.
f) Determine analytically magnitude, direction and position of resultant with respect to 5 kN force shown in Figure No. 2.

Fig. No. 2
3. Attempt any FOUR of the following:
a) Differentiate between Resultant and Equilibrant.
b) A sphere of weight 400 N rests in a groove of smooth inclined surfaces making indination of 30° and 60° with horizontal. Find reaction at contact surfaces.
c) A simply supported beam of span 10 m carries at central a point load of 25 kN and audl of $25 \mathrm{kN} / \mathrm{m}$ throughout.
Find support reaction.
d) A simply supported beam AB of span 8 m has two point loads of 6 kN and 12 kN at 4 m and 6 m from LHS. Calculate reactions at A and B .
e) Define friction. List down its any three advantages.
f) A block of 500 N is kept on horizontal surface. A horizontal force of 150 N is required to just move it. Find normal reaction, frictional resistance, resultant reaction and coefficient of friction.

4. Attempt any FOUR of the following:

a) A body of weight 2000 N rests on a horizontal plane.

If the coefficient of friction is 0.4 . Find the horizontal force required to move the body.
b) A block of 80 N is placed on a horizontal plane where the coefficient of friction is 0.25 . Find the force at 30° up the horizontal to just move the block.
c) State any four laws of static friction.
d) Find the centroid of Lection $90 \times 60 \times 8 \mathrm{~mm}$.
e) Calculate centre of gravity for Fig. No.3.

Fig. No. 3
f) Define moment of inertia. Calculate radius of gyration for rectangular section.
5. Attempt any FOUR of the following:
a) Find centre of gravity for the solid. Refer Fig. No 4.

Fig. No. 4
b) Give the values of moment of inertia (about $x x$ and $y y$) for following sections.
(i) Triangle
(ii) Circle
c) A screw jack has an effort wheel diameter of 300 mm and pitch is 6 mm . If a load of 1200 N is lifted by an effort of 200 N , find the efficiency of a machine.
d) The diameter of wheel in a differential axle and wheel is 40 cm and that of axles are 10 cm and 8 cm . If an effort of 50 N can lift a load of 1500 N , Find the efficiency of the machine.
e) A load of 1 kN is lifted by an effort of 56 N and 2 kN load is lifted by an effort of 96 N . calculate effort required to lift a load of 3 kN .
f) Give the formulae for following machines for calculating velocity ratio with the meaning of terms involved in it.
(i) Double purchase crab
(ii) Worm and worm wheel
6. Attempt any FOUR of the following:
a) Draw and label the diagram for single purchase crab.
b) Define:
(i) Bulk modulus
(ii) Modulus of rigidity.
c) Draw the stress - strain curve for ductile material.
d) List out assumptions made in theory of pure torsion.
e) A circular bar having $200 \mathrm{~mm}^{2}$ area is subjected to axial loads shown in Fig. No. 5. Find P and total elongation Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig. No. 5
f) If $E=2.5(G)$, Find the value of Poisson's ratio.

