17102

21819

2 Hours / 50 Marks

Seat No.				
Scat 110.				

- Instructions (1) All Questions are Compulsory.
 - (2) Assume suitable data, if necessary.
 - (3) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (4) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any NINE of the following:

18

- a) Define stress and strain.
- b) State pressure depth relation. Give meaning of each term in it.
- c) Define velocity gradient and state its unit.
- Define cohesive force and adhesive force.
- e) Convert body temperature 98.6°F into °C.
- f) Explain why Cp is greater than Cv.
- Define the two specific heats for a gas.
- Find angle of incidence if angle of refraction is 30° for a glass having refractive index 1.5.
- i) Derive the relation $V = n\lambda$.
- Define phase angle and Epoch. j)
- State how stationary wave is formed.
- 1) Define resonance.

171	02	[2]			
		M	arks		
2.		Attempt any <u>FOUR</u> of the following:	16		
	a)	Explain behaviour of wire under continuously increasing load. Using stress-strain diagram.			
	b)	Calculate Young's modulus of elasticity for a wire having length 80 cm and diameter 4 mm. The wire elongates by 1.5 mm when subjected to a load of 10 N.			
	c)	State and explain Newton's law of viscosity and hence define coefficient of viscosity.			
	d)	A liquid rises through a height of 4 cm in a capillary tube of radius 0.4 mm. How far will it rise in a capillary tube of radius 0.8 mm.			
	e)	Define critical velocity. State significance of Reynolds's number.			
	f)	Distinguish between isothermal process and adiabatic process.			
3.		Attempt any FOUR of the following:	16		
	a)	State and explain law of thermal conductivity of heat.			
	b)	State three gas laws. What is an ideal gas?			
	c)	(i) State Snell's law of refraction.			
		(ii) State condition of total internal reflection in optical fiber.			
	d)	Calculate numerical aperture and acceptance angle for an optical fiber. If R.I. of core is 1.5 and R.I. of cladding is 1.3.			
	e)	Distinguish between transverse wave and longitudinal wave.			
	f)	A turning fork of frequency 512 Hz resonates with an air column of length 15 cm. The end correction is 5 mm.			

Calculate the velocity of sound in air.