# 17320

# 21819

# 3 Hours / 100 Marks Seat No.

- Instructions (1) All Questions are Compulsory.
  - (2) Answer each next main Question on a new page.
  - (3) Illustrate your answers with neat sketches wherever necessary.
  - (4) Figures to the right indicate full marks.
  - (5) Assume suitable data, if necessary.
  - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
  - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

## 1. a) Attempt any SIX of the following:

- (i) Convert the following binary number to gray code.
  - 1) 1101101
  - 2) 101110
- (ii) List any two applications of multiplexer.
- (iii) State the different triggering methods in digital circuit.
- (iv) List any two applications of shift registers.
- (v) Identify following ICs.
  - 1) IC 0800
  - 2) IC 0809
- (vi) Compare volatile memory and non- volatile memory (any two points)

17320 [2]

| Marks |
|-------|
|-------|

- (vii) State any four Boolean laws.
- (viii) Draw the logic symbol and truth table for two input EX-OR gate.

#### b) Attempt any TWO of the following:

6

(i) Solve the following subtraction using 9's and 10's complement method.

$$(84)_{10} - (23)_{10}$$

- (ii) Minimize the following using K-map.
  - 1) F (A, B, C) =  $\pi$  M (0, 1, 2, 3, 7)
  - 2) F (A, B, C, D) =  $\Sigma$  m (1, 2, 3, 5, 7, 9, 12)
- (iii) Implement the following function using 16:1 multiplexer.

$$Y = \sum m$$
 (1, 2, 5, 6, 8, 12)

#### 2. Attempt any FOUR of the following:

16

- a) Convert the following numbers in binary and add them.  $(174)_8 + (253)_8$
- b) Why NAND gate is called universal gate? Implement basic gates using NAND gate only.
- c) Convert the following expressions into their standard forms
  - $(i) \quad Y = A + BC + ABC$
  - (ii) Y = (A + B) (A + C)
- d) Draw the circuit diagram of master-slave J-K flip-flop with the help of NAND gates.
- e) Design 3 bit asynchronous up- counter, write its truth table and draw its output waveforms.
- f) State and define any four specifications of DAC.

### 3. Attempt any <u>FOUR</u> of the following:

- a) Add (248)<sub>10</sub> and (568)<sub>10</sub> in BCD
- b) Compare CMOS, TTL and ECL logic families. (any four points)
- c) Design 16:1 multiplexer using 4:1 multiplexer.

17320 [3]

**Marks** 

- d) Write the use of preset and clear terminal in a flip-flop.
- e) State advantages and disadvantages of single slope ADC. (any two points each)
- f) Compare EPROM and EEPROM with any four points.

#### 4. Attempt any FOUR of the following:

16

- a) State and prove De'morgan's theorems.
- b) Realize the following function using demultiplexer.
  - (i)  $F_1 = \Sigma m$  (0, 1, 2, 5, 7, 9, 11, 15)
  - (ii)  $F_2 = \Sigma m$  (3, 4, 6, 10)
- c) Explain the working of 4 bit ring counter with a neat diagram.
- d) Convert J-K flip into 'D' and 'T' flip-flop. Write their truth tables.
- e) With the help of block diagram. Describe the working of successive approximation ADC.
- f) Compare static RAM with Dynamic RAM, (any four points)

### 5. Attempt any <u>FOUR</u> of the following:

- a) Draw the circuit diagram of CMOS NOT gate and explain its working.
- b) Draw and explain circuit diagram of 1:4 demultiplexer using logic gates.
- c) In the Fig. No. 1 the control signals  $S_1$ ,  $S_0$  changes from 00 to 11. Write the truth table for outputs  $Q_A$  and  $\overline{Q}_A$  Figure No. 1.




Fig. No. 1

17320 [4]

- d) Draw 4 bit SISO shift register using D-flip-flop. Explain its working in brief with waveforms.
- e) Calculate the analog output for 5 bit weighted resistor type DAC for inputs
  - (i) 10110
  - (ii) 10001

Assume reference voltage = 10V

f) State any four advantages of semiconductor memories.

#### 6. Attempt any FOUR of the following:

- a) Solve the following subtraction using 1's and 2's complement method  $(10110)_2 (10011)_2$
- b) Simplify the following expressions using Boolean laws.
  - (i)  $Y = \overline{A} \overline{B} C + B\overline{C} + \overline{A}BC + ABC$
  - (ii)  $Y = \overline{\overline{D}(C+D)}$
- c) Realize full adder circuit using K-map
- d) Define priority encoder. Draw the block diagram of 8:3 priority encoder. Write its truth table.
- e) Draw the block diagram of IC 7490 and specify it's working as decade counter.
- f) Draw the circuit diagram of 3-bit binary weighted resistor type DAC. Derive the expression for its output voltage.