17104

21819

3 Hours / 100 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any TEN of the following: 20
a) Find x if $\left|\begin{array}{rrr}x & 4 & -4 \\ 3 & -2 & 1 \\ -2 & -4 & 1\end{array}\right|=0$
b) Find A if, $2 \mathrm{~A}+3\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}5 & 7 \\ 6 & 3\end{array}\right]$
c) If $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{rr}3 & -5 \\ -1 & 2\end{array}\right]$ Show that $A B=B A=I$
d) Resolve into partial fraction $\frac{x-2}{x(x-1)}$
e) If $\tan \mathrm{A}=\frac{1}{2}, \tan \mathrm{~B}=\frac{1}{3}$ find $\tan (\mathrm{A}+\mathrm{B})$
f) Without using calculator find the value of $\sin \left(75^{\circ}\right)$.
g) Prove that $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\cot ^{-1} 2$
h) Find the principal value of $\tan ^{-1}(\sqrt{3})$
i) Find the principal value of $\sec \left[\cos ^{-1}(\sqrt{3} / 2)\right]$
j) Find the distance between point $(-2,3)$ and the line $3 x+2 y+26=0$
k) Find range and coefficient of range of the following data $5,7,9,13,11,5,3$
1) Prove that the lines $3 x+2 y=5$ and $2 x-3 y=6$ are perpendicular.
2. Attempt any FOUR of the following:
a) Solve using Cramer's rule $x+z=4, y+z=2, x+y=0$
b) If $A=\left[\begin{array}{rrr}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$ prove that $A^{2}=I$
c) If $A=\left[\begin{array}{lll}2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2\end{array}\right]$ show that $A^{2}-8 A$ is scalar matrix.
d) If $\mathrm{A}=\left[\begin{array}{rrr}2 & 3 & -1 \\ 4 & 5 & 0\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rrr}-1 & 2 & 4 \\ 1 & 3 & 0\end{array}\right]$ verify that $(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
e) Find A^{-1} By adjoint method if $\mathrm{A}=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 0\end{array}\right]$
f) Resolve into partial fractions $\frac{3 x-1}{(x-4)(x+1)(x-1)}$
3. Attempt any FOUR of the following:
a) Using matrix inversion method solve the system of equation

$$
x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6
$$

b) Resolve into partial fractions $\frac{x^{2}+23 x}{(x+3)\left(x^{2}+1\right)}$
c) Resolve into partial fractions $\frac{2 x+1}{x^{2}(x+1)}$
d) In $\Delta \mathrm{ABC}$ prove that $\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=\tan \mathrm{A} \cdot \tan \mathrm{B} \cdot \tan \mathrm{C}$
e) If $A+B=\frac{\pi}{4}$, show that $(1+\tan A)(1+\tan B)=2$
f) Prove that $\frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}=\tan 5 A$
4. Attempt any FOUR of the following:
a) Prove that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
b) Prove that $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$
c) Prove that $\frac{\sin \mathrm{A}+\sin 2 \mathrm{~A}+\sin 3 \mathrm{~A}+\sin 4 \mathrm{~A}}{\cos \mathrm{~A}+\cos 2 \mathrm{~A}+\cos 3 \mathrm{~A}+\cos 4 \mathrm{~A}}=\tan \frac{5 \mathrm{~A}}{2}$
d) If $\tan (A+B)=\frac{3}{4} \tan (A-B)=\frac{77}{36}$ Find the value of $\tan 2 B$
e) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$
f) Prove that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}$

5. Attempt any FOUR of the following:

a) Prove that $\frac{\cos 3 \mathrm{~A}}{\cos \mathrm{~A}}+\frac{\sin 3 \mathrm{~A}}{\sin \mathrm{~A}}=4 \cos 2 \mathrm{~A}$
b) Prove that $\sin \mathrm{C}-\sin \mathrm{D}=2 \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \cdot\left(\sin \frac{\mathrm{C}-\mathrm{D}}{2}\right)$
c) Without- using calculator prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$
d) Find the acute angle between the lines $3 x-y=4$ and $2 x+y=3$
e) If m_{1} and m_{2} are the slope of the two lines then prove that angle between two lines is $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
f) Find the equation of the line passing through the point of intersection of $2 x+y+6=0$ and $3 x+5 y-15=0$ and parallel to the line $5 x+6 y+3=0$
6. Attempt any FOUR of the following:
a) Show that the distance between two parallel lines $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$ is given by $d=\left|\frac{c_{2}-c_{1}}{\sqrt{a^{2}+b^{2}}}\right|$
b) Find the angle between the lines $y=5 x+6$ and $y=x$
c) In the two factories P and Q engaged in the same industries. The average weekly wages and standard deviations are as follows. Which factory P or Q has greater variability in individual wages?

Factories	Averages wages	Standard deviation
P	34.5	5.0
Q	28.5	4.5

d) Find range and coefficient of range for the following data:

Marks :	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$
No. of students :	06	10	16	14	08	04

e) Find the mean deviation for the following data:

Marks	3	4	5	6	7	8
No of students	1	3	7	5	2	2

f) Find the standard deviation for the following data:

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	14	23	27	21	15

