	SUMMER - 19 EXAMINATION		
Subject Name: FLUID MECHANICS AND MACHINERY	Model Answer	Subject C	22445

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1.		Attempt any FIVE of the following:	10 Marks
a)	a	List out the various measuring devices used for measuring fluid pressure The Barometer, Piezometer or Pressure Tube, Manometers, The Bourdon Gauge The Diaphragm Pressure Gauge, Micro Manometer (U-Tube with Enlarged Ends)	02
	b	Height of water column, $h_{1}=100 \mathrm{~m}$ Specific gravity of water $\mathrm{s}_{1}=1.0$ Specific gravity of kerosene $\mathrm{s}_{2}=0.81$ Specific gravity of carbon-tetra-chloride, $\mathrm{s}_{3}=1.6$ For the equivalent water head Weight of the water column $=$ Weight of the kerosene column. So, $\rho \mathrm{gh}_{1} \mathrm{~s}_{1}=\mathrm{rgh} \mathrm{h}_{2} \mathrm{~s}_{2}=\rho \mathrm{g} \mathrm{h}_{3} \mathrm{~s}_{3}$ $1000 \times 9.81 \times 100 \times 1.0=1000 \times 9.81 \mathrm{xh}_{2} \times 0.81=1000 \times 9.81 \mathrm{xh}_{3} \times 1.6$ $\mathrm{h}_{2}=10 / 0.81$ $\mathrm{h}_{2}=12.3456 \mathrm{~m}$ and $\mathrm{h}_{3}=6.25 \mathrm{~m}$	02

2		Attempt any THREE of the following:	12
	a	There are three physical properties of fluids that are particularly important: density, viscosity, and surface tension. Density. Density depends on the mass of an individual molecule and the number of such molecules that occupy a unit of volume For liquids, viscosity also depends strongly on the temperature; Water at $20^{\circ} \mathrm{C}$ has a surface tension of 72.8 dynes/cm compared 465 for mercury.	1 each
	b	$\begin{aligned} & \text { Area }=\mathrm{bxd}=0.6 \times 1.2=0.72 \mathrm{~m}^{2} \\ & \mathrm{X}=0.7+0.6 \sin 45^{0}=0.7+0.6 \times 0.707=1.1243 \mathrm{~m} \\ & \text { Force }=\mathrm{wAx}=9810 \times 0.72 \times 1.1243=7940.90 \mathrm{~N} \\ & \text { Centre of pressure } \mathrm{h}=\mathrm{Ig} \sin ^{2} 45 / \mathrm{A} x+\mathrm{x} \\ & \mathrm{Ig}=\mathrm{bd}^{3} / 12=0.6 \times 1.2^{3} / 12=0.0864 \mathrm{~m}^{4} \\ & \mathrm{~h}=0.0864 \times 0.5 / 0.72 \times 1.1243+1.1243=1.243 \mathrm{~m} \end{aligned}$	01 mark 01 mark 01 mark 01 mark
	c	An orifice plate: It is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases. A little downstream of the orifice the flow reaches its point of maximum convergence, the vena contracta where the velocity reaches its maximum and the pressure reaches its minimum. Beyond that, the flow expands, the velocity falls and the pressure increases.	04 marks
	d		01 mark Sketch
		Explain Pitot Tube - A pitot tube is the simple device used for measuring the velocity of the flow at the required point in a pipe or a stream. It is also called as impact tube or stagnation tube. It is based on the principle that if the velocity of flow at a point becomes zero, the pressure is increased due to conversion of kinetic energy into pressure energy.	

		- In its simple form, a pitot tube consists of a transparent glass tube bent through 90° and with ends unsealed. Diameter of tube is larger enough to neglect capillary effects. One leg called as the body is inserted into the flow at upstream and aligned with the direction of flow whereas the other leg, called as stem, is vertical and open to atmosphere. The liquid is raise in the tube due to changes in energy. The velocity is determined by measuring the rise in the tube. Consider a section 1 and 2 at a same level just in front of inlet of the tube Apply Bernoulli's equation $\mathrm{P}_{1} / \gamma+\mathrm{V}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{Z}_{1}=\mathrm{P}_{2} / \gamma+\mathrm{V}_{2}{ }^{2} / 2 \mathrm{~g}+\mathrm{Z}_{2}$ $\mathrm{Z}_{1}=\mathrm{Z}_{2}$ as they are at same level $V_{2}=0$ because flow of particle is comes to rest at point 2 . $\mathrm{h}=$ rise in tube $\mathrm{H}=$ head of pressure at $h+H=$ stagnation head Substitute above value in Bernoulli's $\mathrm{H}+\mathrm{V}_{1}{ }^{2} / 2 \mathrm{~g}=\mathrm{h}+\mathrm{H} \quad \mathrm{h}=\mathrm{V}_{1}{ }^{2} / 2 \mathrm{~g}$ $\mathrm{V}_{1}=\sqrt{ } 2 \mathrm{gh}$ Actual velocity $\mathrm{V}=\mathrm{Cv} \mathrm{V}$ theoretical $\mathrm{V}=\mathrm{Cv} \sqrt{ } 2 \mathrm{gh}$ Where $\mathrm{Cv}=$ Coefficient of velocity	03 marks Explain
$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
3	a	Interpret the type of flow (Laminar / Turbulent) i. Laminar Flow ii. Turbulent Flow iii. Laminar Flow iv. Turbulent Flow	01 Mark each
3	b	Water hammer phenomenon: commonly occurs when a valve closes suddenly at an end of a pipeline system, and a pressure wave propagates in the pipe. To reduce / avoid water hammer effect following things are used. 1. Provide surge tank before the valve on main pipe line. 2. Provide bypass pipe near the valve. 3. Provide Air traps or stand pipes (open at the top) to absorb the potentially damaging forces caused by the moving water. 4. Use high strength pipes. 5. Close the valve slowly.	02 Marks for Cause 02 Marks for any 2 effects

3	c	Problem on Darcy's equation	

$\begin{aligned} & \mathrm{Q} . \\ & \mathrm{No.} \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \mathrm{N} . \end{aligned}$	Answer	Marking Scheme
		Q 3 c) Given: $\begin{aligned} & N=\text { Population }=800000 \\ & L=\text { length of pipe }=6.4 \mathrm{~km} \\ &=6400 \mathrm{~m} \end{aligned}$ water required per day per head $=140$ lit $\$$. $\begin{aligned} & h_{f}=\text { loss of head }=60 \mathrm{~m} \\ & f=0.04 \end{aligned}$ $\begin{aligned} \text { Total water required in } 1 \text { day } & =140 \times 800000 \\ & =112 \times 10^{6} \text { lit } \end{aligned}$ Half of water is supplied in 8 hrs. $\therefore \text { Discharge reqwired } \begin{aligned} Q & =\frac{112 \times 10^{6}}{2 \times 8 \times 3600} \\ & =1944.4 \mathrm{lit} / \mathrm{s} \\ & =1.944 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$ Using Darcy's equation $\begin{aligned} h_{f} & =\frac{4 f L Q^{2}}{12.1 \times d^{5}} \\ \therefore 60 & =\frac{4 \times 0.04 \times 6400 \times(1.944)^{2}}{12.1 \times d^{5}} \\ d^{5} & =5.330 \\ d & =1.397 \mathrm{~m} \end{aligned}$ Diameter of pipe required is 1.397 m	01 Mark for Q Calculation 01 Mark for hf formula 02 Marks for correct answer

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
3	e	Q3e. Given: velocity of jet $V_{1}=20 \mathrm{~m} / \mathrm{s}$ velocity of vane $u_{1}=u_{2}=5 \mathrm{~m} / \mathrm{s}$ Angle of deflection of jet $=120^{\circ}$ For symmetrical curved vane $c=\phi$ $\begin{aligned} & 120^{\circ}=180-(\phi+\theta) \\ & \therefore \phi=\theta=30^{\circ} \end{aligned}$ velocity triangle for curved blade. (1) vane angle at Intet- α Applying sine rule to $\triangle A B C$ $\frac{A B}{\sin (180-\theta)}=\frac{A C}{\sin (\theta-\alpha)} \approx$ $\frac{v_{1}}{\sin \theta}=\frac{u_{1}}{\sin (\theta-\alpha)}$ $\therefore \frac{20}{\sin 30}=\frac{5}{\sin (30)}$ $\therefore \quad \alpha=22.82^{\circ}$ vane angle at inlet $=\alpha=22.82^{\circ}$ (ii) Absolute velocity of $\hat{\jmath}$ t at exit (V_{2}) Apptying sine rule to $\triangle A B C$ $\begin{aligned} \frac{v_{1}}{\sin (180-\theta)} & =\frac{v_{r_{1}}}{\sin \alpha} \\ \therefore \frac{20}{\sin 30} & =\frac{v_{r_{1}}}{\sin \left(228^{2}\right)} \\ \therefore v_{r_{1}} & =15.51 \mathrm{~m} / \mathrm{s} \end{aligned}$ In $\triangle A B C, \quad v_{\omega_{1}}=v_{1} \cos \alpha$ $\begin{aligned} & =20 \times \cos (22.82) \\ & =18.43 \mathrm{~m} / \mathrm{s} \end{aligned}$	01 Mark for correct value of angle 02 Mark for correct value of v 2 01 Marks for correct value of Workdone

$v_{\gamma_{1}}=v_{v_{2}}=15.51 \mathrm{~m} / \mathrm{s} \quad$ (smooth vane)
At outlet $\triangle B^{\prime} C^{\prime} D^{\prime}$.

$$
\begin{aligned}
v_{r_{2}} \cos \phi & =u_{2}+v_{\omega_{2}} \\
v_{\omega_{2}} & =v_{\gamma_{2}} \cos \phi-u_{2} \\
& =15.51 \times \cos 30-5 \\
& =8.43 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
v_{f_{2}}=v_{r_{2}} \cdot \sin \phi
$$

$$
=15.51 \times \sin 30
$$

$$
=7.75 \mathrm{~m} / \mathrm{s}
$$

$$
\tan \beta=\frac{V_{f_{2}}}{V_{\omega_{2}}}=\frac{7.75}{8.43}
$$

$$
\therefore \beta=\tan ^{-1}(0.919)
$$

$$
=42.59^{\circ}
$$

Angle made by V_{2} at outlet with direction of motion of raneis

$$
\begin{aligned}
& =180^{\circ}-\beta=180-42.59^{\circ} \\
& =137.41^{\circ}
\end{aligned}
$$

Absolute velocity of jet at exit (V_{2})

$$
\begin{aligned}
& v_{2}=\sqrt{v_{\omega_{2}}^{2}+v_{f 2}^{2}} \\
&=\sqrt{(8.43)^{2}+(7.75)^{2}} \\
&=11.45 \mathrm{~m} / \mathrm{s} . \quad \text { (Direction is as shown } \\
& \text { in velocity diagram) }
\end{aligned}
$$

(3) Workdone per second per N of water

$$
\begin{aligned}
W \cdot D & =\frac{1}{g}\left(v_{w_{1}} \cdot u_{1}+v_{\omega_{2}} \cdot u_{2}\right) \\
& =\frac{1}{9.81}(18.43 \times 5+8.43 \times 5) \\
W \cdot D & =13.69 \mathrm{Nm}
\end{aligned}
$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
Q. 5		Attempt any TWO of the following	12 Marks
	a)	A pipe carrying water has a 30 cm X 15 cm venturimeter, which is positioned inclined at 30° to the horizontal. The flow is upward. The converging cone is $\mathbf{4 5} \mathrm{cm}$ in length and C_{d} of the meter is $\mathbf{0 . 9 8}$. A differential U-tube Manometer with mercury as indicating fluid is connected to the inlet and to the throat and shows a differential column height of 30 cm . (i) Calculate discharge of the pipe (ii) If the pressure in the inlet section is 50 kPa determine the pressure at the throat (iii)Find the head loss in the converging section of the venturimeter.	
	Sol.	$\begin{array}{ll} d_{1}=30 \mathrm{~cm}=0.30 \mathrm{~m} & a_{1}=\frac{\pi}{4} d_{1}^{2}=0.0706 \mathrm{~m}^{2} \\ P_{1}=50 \mathrm{kP}=50 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} & a_{2}=\frac{\pi}{4} d_{2}^{2}=0.0176 \mathrm{~m}^{2} \\ d_{2}=15 \mathrm{~cm}=0.15 \mathrm{~m} & \\ c_{d}=0.98 & \mathrm{~cm}=0.30 \mathrm{~m} \\ x=30 \mathrm{~cm} \\ h=x\left[\frac{S_{m}}{S_{L}}-1\right]=0.30 \times\left[\frac{13.6}{1}-1\right] \end{array}$ $\therefore h=3.78 \mathrm{~m}$ head of water $\text { i) } \begin{aligned} \text { Discharge }=Q & =c_{d} \cdot \frac{a_{1} a_{2} \sqrt{2 g h}}{\sqrt{a_{1}^{2}-q_{2}^{2}}} \\ \therefore Q & =0.1533 \mathrm{~m}^{3} / \mathrm{sec} \\ \therefore Q & =153.3 \mathrm{Lit} / \mathrm{sec} \ldots \text { Discharge of the pipe } \end{aligned}$ ii) Now, By Bernoulli's theorem, $\frac{P_{1}}{w}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{w}+\frac{v_{2}^{2}}{2 g}+z_{2}$ Now, Take $z_{1}=0 ; \quad Z_{2}=0.45 \times \sin 30^{\circ}$ $\therefore z_{2}=0.225 \mathrm{~m}$	01 Mark 01 mark

	$\begin{array}{ll} Q=a_{1} V_{1} & Q=a_{2} V_{2} \\ 0.1533=0.0706 \times V_{1} & 0.1533=0.0176 \times V_{2} \\ \therefore V_{1}=2.1713 \mathrm{~m} / \mathrm{s} & \therefore V_{2}=8.71 \mathrm{~m} / \mathrm{s} \end{array}$ Now, $\begin{aligned} & \frac{P_{1}}{w}+\frac{v_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{w}+\frac{v_{2}^{2}}{2 g}+z_{2} \\ & \frac{50 \times 10^{3}}{9810}+\frac{2.1713^{2}}{2 \times 9.81}+0=\frac{P_{2}}{9810}+\frac{8.71^{2}}{2 \times 9.81}+0.225 \\ & P_{2}=12,217.66 \mathrm{~N} / \mathrm{m}^{2} \\ & \therefore P_{2}=12.21 \mathrm{kPa} \text {... Pressure at the throat } \end{aligned}$ iii) $\begin{aligned} & \frac{p_{1}}{w}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{w}+\frac{v_{2}^{2}}{2 g}+z_{2}+h_{L} \\ & \left(\frac{p_{1}}{w}-\frac{p_{2}}{w}\right)+\left(\frac{v_{1}^{2}}{2 g}-\frac{v_{2}^{2}}{2 g}\right)+\left(z_{1}-z_{2}\right)=h_{L} \\ & h+\left(\frac{v_{1}^{2}-v_{2}^{2}}{2 g}\right)+\left(z_{1}-z_{2}\right)=h_{L} \\ & 3.78+\left(\frac{2.1713^{2}-8.71^{2}}{2 \times 9.81}\right)+(0-0.225)=h_{L} \\ & 3.78-3.62-0.225=h_{L} \\ & \therefore h_{L}=-0.065 \mathrm{~m} \end{aligned}$	02 Mark 02 Mark
b)	Explain the terms involved in Darcy's equation, Chezy's equation for frictional loss, also show that for given total head H, the power transmitted through a pipeline connected to a reservoir is maximum when the loss of head due to friction $h_{f}=H / 3$ (Minor losses can be neglected)	
Sol.	Darcy's equation $h f=\frac{4 f L V^{2}}{2 g d}=\frac{f L Q^{2}}{3 d^{5}}$ Where, $\mathrm{h}_{\mathrm{f}}=$ Head loss due to friction $\mathrm{f}=$ Darcy's coefficient of friction $\mathrm{L}=$ Length of pipe (m)	01 Mark 01 Mark

	V $=$ Velocity of flowing fluid $(\mathrm{m} / \mathrm{s})$ $\mathrm{Q}=$ Discharge through pipe $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ d = Diameter of pipe (m) $\mathrm{g}=$ Acceleration due to gravity $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$	01 Mark 01 Mark 01 Mark 01 Mark
c)	Explain the expression of force exerted by the impact of jet on an inclined fixed plate and also draw in neat sketch for the same. Also find the work done.	
Sol.	Fig. Impact of jet on an inclined fixed plate	01 Mark

Data: $U_{1}=12 \mathrm{~m} / \mathrm{s}$

$\mathrm{Q}=750 \mathrm{lit} / \mathrm{sec}=0.750 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{H}=35 \mathrm{~m}$
$\emptyset=180^{\circ}-160^{\circ}=20^{\circ}$
$\mathrm{C}_{\mathrm{v}}=0.98$
$\eta_{\text {mech }}=80 \%=0.80$
Power $=$?
$\eta_{\text {hyd }}=$?
$\eta_{\text {overall }}=$?

$$
\begin{aligned}
\mathrm{V}_{1} & =C_{v} \sqrt{2 g h} \\
& =0.98 \times(2 \times 9.81 \times 35)^{1 / 2} \\
& =25.68 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From Inlet Velocity triangle, $\mathrm{V}_{\mathrm{w} 1}=\mathrm{V}_{1}=25.68 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{r} 1}=\mathrm{V}_{1}-\mathrm{U}_{1}=25.68-12=13.68 \mathrm{~m} / \mathrm{s}$
But, $\quad \mathrm{V}_{\mathrm{r} 2}=\mathrm{V}_{\mathrm{r} 1}=13.68 \mathrm{~m} / \mathrm{s}$
From Outlet Velocity triangle,

$$
\cos \emptyset=\frac{\mathrm{U}+\mathrm{V}_{\mathrm{w} 2}}{\mathrm{~V}_{\mathrm{f} 2}}
$$

$\mathrm{V}_{\mathrm{w} 2}=\cos \emptyset \mathrm{V}_{\mathrm{r} 2}-\mathrm{U}=\left(\cos 20^{0} \mathrm{x} 13.68\right)-12$
$\mathrm{V}_{\mathrm{w} 2}=0.8558 \mathrm{~m} / \mathrm{s}$
Power $=\rho Q\left(V_{w 1}+V_{w 2}\right) U$
Power $=238.82 \times 10^{3} \mathrm{Watt}$

$$
\eta_{\text {hyd }}=\frac{2\left(V_{w 1}+V_{w 2}\right) \mathrm{U}}{\mathrm{~V}_{1}{ }^{2}}
$$

$$
\eta_{\mathrm{hyd}}=0.9656=96.56 \%
$$

$$
\boldsymbol{\eta}_{\text {overall }}=\frac{\text { Power }}{\text { WQH }}
$$

$$
=\quad 92.74 \%
$$

Sol.

$$
\begin{aligned}
& Q=0.98 \mathrm{~m}^{3} / \mathrm{s}, \quad D_{1}=800 \mathrm{~mm}=0.8 \mathrm{~m} \quad N=550 \mathrm{rpm} \\
& B_{1}=100 \mathrm{rpm}=0.1 \mathrm{~m}, \phi=40^{\circ}, \quad H_{m}=35 \mathrm{~m} \\
& P=500 \mathrm{~kW}=500 \times 10^{3} \text { watt } \\
& U_{1}=\frac{\pi D_{1} N}{60}=\frac{\pi \times 0.8 \times 550}{60}=23.04 \mathrm{~m} / \mathrm{s} \\
& V_{f_{1}}=\frac{Q}{\pi D_{1} B_{1}}=\frac{0.98}{\pi \times 0.8 \times 0.1}=3.90 \mathrm{~m} / \mathrm{s} \\
& V_{w_{1}}=\left(U_{1}-V_{f_{1}} \cdot \cot \phi\right)=\left(23.04-3.90 \times \cot 40^{\circ}\right) \\
& V_{w_{1}}=18.39 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

* Manometric efficiency, $\underline{\eta}_{\text {mana }}=\frac{9 . H_{m}}{V_{w_{1}} \cdot u_{1}}=\frac{9.81 \times 35}{18.39 \times 23.04}$

$$
=0.81=81 \%
$$

* Overall efficiency,

$$
\begin{aligned}
\eta_{\text {overall }} & =\frac{W \cdot Q \cdot H_{m}}{P}=\frac{9810 \times 0.98 \times 35}{500 \times 10^{3}} \\
& =0.67=67 \%
\end{aligned}
$$

* Mechanical efficiency,

$$
\begin{aligned}
& \eta_{\text {mech }}=\frac{\eta_{0}}{\eta_{\text {mam }}}=\frac{0.67}{0.81}=0.83 \\
& \therefore \eta_{\text {mech }}=83 \%
\end{aligned}
$$

