MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

SUMMER-2019 Examinations

Subject Code: 22421
Model Answer
Page 1 of 13
Important suggestions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. 1	Attempt any FIVE of the following		5x2=10 Marks
a)	Construct OR gate using NAND gate.		
Ans:	OR ga	e using NAND gate: INPUT A	(2 Marks) PUT or equivalent
b)	Compare Harward and Von-Neuman architecture. (any two points)		
Ans:	(Any Two point expected: 1 Mark each, Total 2 Marks)		
	S.No	Harward architecture	Von-Neumann architecture
	1	The computer has two separate memories for storing data and program. e.g. 8051 microcontroller	The computer has single storage system(memory) for storing data as well as program to be executed e.g. 8085 microprocessor
	2	Faster Execution of program	Slower execution of program
	3	Requires more hardware because of separate bus-structure	Requires less hardware because of single bus structure

SUMMER-2019 Examinations
Subject Code: 22421
Model Answer
Page 2 of 13

SUMMER-2019 Examinations

Subject Code: 22421
Model Answer
Page 3 of 13
g) Find the number of address lines required for (i) 4K RAM (ii) 8K ROM

Ans: (i) For 4K RAM : - 12 address line as $2^{12}=4096$
(1 Mark)
(ii) For 8K ROM : - 13 address lines as $2^{13}=8192$
(1 Mark)

b) Compare microprocessor \& microcontroller. (any four points)
(Any four point expected: 1 mark each, total 4 Mark)

S.No	Microprocessor	Microcontroller
1	It is just a CPU i.e. central processing unit with address and data bus. It requires memory and other peripherals to make a computer	It is a computer on single chip. It consists of CPU memory and peripherals in a single chip.
2	It does not have digital input output ports. Needs to be externally connected	It has several digital input output lines 8051 has 32 I/O lines
3	It is mainly used for information processing, multimedia and for making desktop computer.	It is mainly used for digital control in industrial applications or in home appliances
4	It can have large external memory	Memory capacity is small 5It is based on VonNeumann architecture
6	Cost and size of hardware is large based on Harward architecture	
7	Example: 8085 microprocessor, Pentium processor	It is cheaper in cost and compact in size
Example: 8052 8051, microcontroller		

c) Solve the following SOP expressions with the help of K-map :

	the variable with individual variables. For example: $A+B C=(A+B)(A+C)$. OR 1. Annulment law: $\begin{aligned} & A .0=0 \\ & A+1=1 \end{aligned}$ 2. Identity law: $\begin{aligned} & \mathrm{A} .1=\mathrm{A} \\ & \mathrm{~A}+0=\mathrm{A} \end{aligned}$ 3. Idempotent law: $\begin{aligned} & A+A=A \\ & A \cdot A=A \end{aligned}$ 4. Complement law: $\begin{aligned} & \mathrm{A}+\mathrm{A}^{\prime}=1 \\ & \mathrm{~A} \cdot \mathrm{~A}^{\prime}=0 \end{aligned}$ 5. Double negation law: $\left.\left((\mathrm{A})^{\prime}\right)\right)^{\prime}=\mathrm{A}$ 6. Absorption law: $\text { A. }(\mathrm{A}+\mathrm{B})=\mathrm{A}$ $A+A B=A$ OR (5) $x+0=x$ (6) $x+1=1$ (7) $x+x=x$ (8) $x+\bar{x}=1$
Q. 3	Attempt any THREE of the following 12 Marks
a)	List any eight features of microcontroller 8051.
Ans:	Following features of microcontroller 8051. (Any four point expected: 1 mark each, total 4 Mark)

| | 1) 4 kbytes of Program memory
 2) 128 bytes of data memory
 3) 1 serial port
 4) 2 internal timers of 16bit
 5) 40 pin device
 6) Power supply voltage 5V
 7) 5 interrupt sources
 8) |
| :--- | :--- | :--- | :--- | :--- |

SUMMER-2019 Examinations
Model Answer
Page 7 of 13

Address latch enable. It is output control signal to indicate presence of address on lower 8 bit address lines AD0-AD7 on port P0. ĒA-

It is active low control input signal. When /EA is at logic 0 , external program memory is used. When /EA is at logic 1, internal program memory is used for address range 0000-0FFF.
d) Draw logic diagram of 4:1 multiplexer \& give it's truth table.

Ans: \quad logic diagram of 4:1 multiplexer \& give it's truth table :
(Diagram: 2 Mark, Truth table: 2 Mark, Total 4 Mark)

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

SUMMER-2019 Examinations
Subject Code: 22421

c)	Write the alternative function of Port-3 pins.
Ans:	Alternative function of Port-3 pins:
d)	Draw master-slave JK FF \& write it's truth table.
Ans:	Master-slave JK FF \& write it's truth table: (Diagram: 2 Mark \& truth table : 2 Marks) or equiavlet figure
e)	Explain Boolean processor of 8051.
Ans:	Explanation: Boolean processor of 8051: The Boolean processor of 8051 offers single bit operations. The internal RAM contains 128 bit addressable bits.

SUMMER-2019 Examinations

Subject Code: 22421
Model Answer
Page 10 of 13

b)	Develop an ALP to generate square wave of 1 kHz at port pin P1.3. Draw flowchart for it.
Ans:	/ / assume clock input 12Mhz $/ /$ required counts $=65536-500=\mathrm{FE} 0 \mathrm{Ch}$ MOV P1,\#00000000B MOV TMOD,\#00000001B MAIN: SETB P1.0 ACALL DELAY CLR P1.0 ACALL DELAY SJMP MAIN DELAY: MOV TH0,\#0FEH MOV TL0,\#00CH SETB TR0 HERE: JNB TF0,HERE CLR TR0 CLR TF0 RET END A suitable flow chart may be given credit.
	Explain full adder with it's logic diagram \& truth table.
	full adder with it's logic diagram \& truth table: (Diagram: 3 Mark \& Truth table: 3 Mark, Total 6 Marks) or equivalent figure

Q. 6	Attempt any TWO of the following 12 Marks
a)	Construct 3-bit synchronous UP counter using flip-flop. Also draw it's timing diagram.
Ans:	3-bit synchronous UP counter using flip-flop : or Equivalent diagram Timing diagram: (3 Marks) or Equivalent diagram
b)	Describe the following assembler directives with one example of each : (i) ORG (ii) DB (iii) EQU (iv) END (v) CODE (vi) DATA
Ans:	(Each assembler directives : 1 Mark, Total 6 Marks) i) ORG: (Origin) It is the assembler directive to indicate starting address of program. Example: ORG 0000h LJMP MAIN ii) DB - Define Byte It is the directive used to define 8 bit data example: DATA1 DB 39H

iii) EQU : Equate It is the directive used to define constant without occupying memory location.

Example: COUN T EQU 25
iv) END: end of program. It is the directive used to indicate end of assembly program
v) CODE: It is the directive used to indicate assembler to start CODE segment
vi) DATA: It is the directive used before variable declarations.
c)

Develop an ALP for interfacing of LED's with Port 1 of 8051. Draw interfacing diagram for the same.
Ans: Developing an ALP for interfacing of LED's with Port 1 of 8051:
(3 Marks)
MOV P1,\#00h ;configure all lines of port P1 in output mode
AGAIN: MOV P1,\#00h
ACALL DELAY
MOV P1,\#0FFh
ACALL DELAY
SJMP AGAIN
DELAY: MOV R0,\#0FFh
BACK2: MOV R1,\#05H
BACK1: DJNZ R1,BACK1
DJNZ R0,BACK2
END
Interfacing diagram :

or equivalent diagram

