

SUMMER – 19 EXAMINATION

Subject Code: 22337

Subject Name: Thermal Engineering Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

).1.	Attempt a	any <u>FIVE</u> of the	following:		10 Marks
a)	Different	ate between H	leat and Work.		
Sol.		tiate between h	eat and work.		
	Ans:	Parameter	II.ee4	Work	
	Sr.No.	Parameter	Heat	W OFK	
	1.	Definition	Form of energy that is	The amount of energy	Any 2 point
			transferred between system and surrounding or two systems due to temperature difference	transferred by a force acting though a distance	1 marks for each Point o difference
	2.	Function	Heat is a function of the state	Heat is a function of the Path	
	3.	Energy Interaction	Due to Temperature Difference	Other than Temperature difference	
b)	State Cla	ausius statemer	nt of second law of thermod	ynamics.	
Sol.	a cyclic I temperat	Process without a ure to a body at a ure is necessary	tate that "It is impossible for a s any external force, to transfer he a higher temperature. Thus exter to transfer heat from a body at a Heat Source Q_R Q_R Q_R $W=Q_R \cdot Q_R$ Heat Sink	eat from a body at a lower rnal mechanical work	1 mark 1 mark

c)	c) Define dryness fraction and degree of superheat.		
Sol.	Dryness fraction: It is defined as a fraction of dry steam that is present in a liquid vapour is called dryness fraction. Or Dryness fraction is the ratio of the Mass of actual dry steam to the Mass of wet steam.	Any one definition	
	$X = M_s / M_s + M_w$	1 mark	
	Where $X - Dryness$ fraction $M_s - mass$ of vapour (dry steam) contain in steam $M_w = mass$ of water in suspension in steam		
d)	 Degree of Superheat: The difference between the temperature of superheated steam and saturated steam (T_{sup} – T_{sat}) is known as degree of superheat. Define Mach number and critical pressure. 	1 mark	
Sol.	1. Mach Number: In fluid dynamics, the Mach number (M or Ma) is a dimensionless		
	quantity representing the ratio of flow velocity past a boundary to the local speed of sound. $\mathbf{M}=\mathbf{c}/\mathbf{a}$	1 mark	
	M is the Mach number, c is the local flow velocity, a is the speed of sound in the medium 2. Critical Pressure: The Pressure for which the maximum discharge through nozzle occurs is called as critical pressure. It is denoted as P _c	1 mark	
e)	Explain bleeding of steam.		
Sol.	It is process of draining steam from turbine at certain point during its expansion and using these steams for heating the feed water supplied to boiler is known as bleed and the process is known as bleeding of steam.	1 mark	
	Boiler Cooling water Figure: Bleeding of steam	1 mark	
f)	State Dalton's law of partial pressure.		
Sol.	This law states that "The total pressure exerted by a mixture of air and water vapour on the walls of container is the sum of partial pressure exerted by air separated and that exerted by vapour separately at common temperature of the condenser". P = Pa + Ps	01 mark	
	Where Pa= partial pressure exhausted by air Ps = partial pressure exhausted by vapour	01 mark	
	P = total pressure of mixture at temperature.		

g)	Define Fourier's law.		
Sol.	The law state that for homogeneous material the rate of heat transfer in steady state in any direction is directly proportional to temperature gradient in that direction.	01 mark	
	$Q/A \alpha dt/dx$	01 mark	
	Q/A = -k dt/dx Where, Q/A is rate of heat transfer		
	dt/dx is temperature gradient		
	k conductivity of medium		
Q.2.	Attempt any <u>THREE</u> of the following:	12 Marks	
a)	State extensive property and Intensive property with two examples each.		
Sol.	Extensive property:- An extensive property of a system is one whose value depend upon		
	the mass of the system. e.g. volume, energy, enthalpy, entropy, internal energy.	1 mark	
		1 mark	
	Intensive property:- An intensive property of a system is one whose value does not		
	depend upon the mass of the system.		
	e.g. Density, Temperature, Pressure	1 mark	
	e.g. Densky, Temperature, Tressure	1 mark	
b)	Define isentropic process and plot it on, P-V and T-S diagram.		
Sol.	Isentropic Process: The process in which working substance neither receives nor rejects heat to its surrounding during expansion or compression is called as Isentropic process, it is also known as adiabatic process. Adiabatic process reversible when it is frictionless and the process is irreversible when it involves friction . Process is denoted by equation $PV^{\gamma}=C$	2 marks	
	$P_{1} = C$ $P_{2} = C$	2 marks (1 Mark for each Dig.)	

c)	Define	:			
	(i) Sens	sible heat			
	. ,	tent heat			
Sol.	i) Sens	sible Heat:			
		at in which change in ged that heat is known		n be observed but phase remains	1 mark
	This he	eat can be sensed by or	rdinary thermometer, It is give	en by the equation	
	Sensibl	e heat = m Cp (T_2-T_1))		
	m is ma	ass			
	Cp is S	pecific heat at constar	nt pressure		1 mark
	T ₁ is In	itial Temperature			
	T ₂ is Fi	nal Temperature			1 mark
	ii) Late	nt Heat:			
			quired for the change of phase o am at constant pressure .	f 1 kg of water at saturated	
	It is den	oted by L , Its value car	be directly obtained from stean	n table	1 mark
	Heat at	which solid changes pha	ase to liquid is known as Latent l	heat of fusion	
	Heat at	which Liquid Changes l	Phase to vapour is known as Late	ent heat of vaporization	
d)	Differe	entiate water tube	boiler and fire tube bo	oilers (any four)	
Sol.	Sr. No.	Parameter	Water tube boiler	Fire tube boiler	
	1.	Medium in tube	Water is circulated in tube and hot gases passed over the tube	Hot gases are circulated through the tube and water flows over tube.	
	2.	Steam Formation Rate	Steam formation rate is high	Steam formation rate is low	1 mark for each point
		Rate	111511		cach point
	3.	Steam Pressure	It can generate steam at higher pressure more than 25 bar	Generate steam at lower pressure up to 25 bar	(Any 4 Points)
	4.	Steam Pressure Operating cost	It can generate steam at higher pressure more than 25 bar Operating cost high	pressure up to 25 bar Operating cost low	-
	4.	Steam Pressure	It can generate steam at higher pressure more than 25 bar	pressure up to 25 bar	-
	4.	Steam Pressure Operating cost	It can generate steam at higher pressure more than 25 bar Operating cost high	pressure up to 25 bar Operating cost low	-
	4.	Steam Pressure Operating cost Overall efficiency Cleaning and	It can generate steam at higher pressure more than 25 bar Operating cost high Overall efficiency high Cleaning and Inspection is	pressure up to 25 barOperating cost lowOverall efficiency lowCleaning and Inspection is difficultLow to medium power	-
	4. 5. 6.	Steam Pressure Operating cost Overall efficiency Cleaning and Inspection	It can generate steam at higher pressure more than 25 bar Operating cost high Overall efficiency high Cleaning and Inspection is easy	pressure up to 25 bar Operating cost low Overall efficiency low Cleaning and Inspection is difficult	-

Sol.	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	02 marks for figure 02 marks for explanation
c)	A gas occupying 0.26 m ³ at 300°C and 0.4 MPa pressure expands till volume becomes 0.441 m ³ and pressure 0.26 MPa. Calculate the change in internal energy per kg of gas. $C_p = 1 \text{ kJ/kg} \text{ K}, C_y = 0.71 \text{ kJ/kg} \text{ K}.$	

Sol.	Ø.3.c.	
	Sol":-	
	Given data:	
	V1 = 0.26 m3 J1 = 800 C = 300 + 273 = 573 K	
	$P_1 = 0.4 M P_9$	
	$V_2 = 0.441 \text{ m}^3$	
	$P_2 = 0.26 MPa$	
	$C_{p} = 1 \text{ kJ} \text{ kgK}$, $C_{V} = 0.71 \text{ kJ} \text{ kgK}$	
	Assume Temperature is constant	
	30, The change in internal energy = du = 0	
	08	02 marks
	Assume Adiabatic process,	
	pr=c v	
	2	
	Figure: p-V47-s diagram of Adiabatic poocess	
	$r = \left(\begin{array}{c} r \\ - \end{array} \right) = 1.4$ is m isentropic index.	
	The change in internal energy = m (V (T2-T1)	02 marks
	The change in internal circos 2 interest	
	$T_2 = T_1 \times \left(\frac{V_1}{V_2}\right) = 300 \left(\frac{0.26}{0.441}\right)$	
	= 242.836 C	
	The change in internal energy	
	$= 1 \times 0.71 \times (242.836 - 300) = -40.586 \text{ kJ} \text{ kg}$	
	. The negative sign indicates that internal energy is decreasing.	
d)	Determine the amount of heat supplied to 2kg of water at 25°C to	
	convert it into steam at 5 bar and 0.9 dry.	

Sol					
		G	0.g.d.		
			Sol":		
			Given data :		
			mass of water = 1	02	
			Temp of water = -	and the second se	
			Steams at 5 bas and dryme	is traction = 0.9	
			Heat in water = MW CpW	Δŧ	01 mark
			= 2×4.1877	125	
			= 209.35	Contract of the	
					01 mark
			From steam table at 5 bo	r	
			hf = 640.1 KJ/K9 h	fg = 2107.4 kJ kg	
			So,		
			Heterm = hfthfax2		
			= 640.1+0.9+2	107-4	
			= 2536.76 kj k	9	
				97 	
			For 2kg, heat required =	2+2536.76	01 mark
			÷	5073.53 KJ	
			- Amount of heat Supplied	= 5073.53 - 209.35	01 mark
				= 4864·17 ×5	
(Q.4.	Attempt a	ny <u>THREE</u> of the following:		12 Marks
	a)	Differenti	ate between natural draught and forced d	lraught cooling tower.	
Sol	•	Sr. No.	Natural draught	Forced draught	01 mark for
		1	The air flows naturally without fan	Fan is located at the top of the	each
			through tower and provides required	tower and enters the side of the	differentiation
			cooling	tower.	
		2	The air circulation through the tower	The air circulation through the	
			depends on wind velocity.	tower depends on fan speed.	
		3	The cooling Rate and efficiency of tower is less.	The cooling Rate and efficiency	
		4	It requires large space for same capacity.	of tower is high. It requires less space for same	
		4	in requires large space for same capacity.	capacity.	
		5	No power requires due to absence of fan.	Fan requires more power as it handles hot air.	
		6	The temp. of water coming out from	The temp. of water coming out	
			In whip of which coming out nom	The temp. of water coming out	

	tower cannot be controlled. from tower can be controlled.	
b)	A gas has a volume of 0.14 rn ³ , pressure 1.6 bar and a temperature	
	110° C. If the gas is compressed at constant pressure until its volume becomes	
	0.112 m ³ Determine:	
	i. Work done in compression of gas ii. heat given out by gas	
ol.	in near given our by gas	
	Q. 4.b.	
	5017;	
	Given data :	
	$v_1 = 0.14 \text{ m}^3$	
	P1 = P2 = 1.6 bar = 1.6 × 105 N/m2	
	$T_1 = 110 + 273 = 383 \text{ K}$	
	$V_2 = 0.112 \text{ m}^3$	
	Assume Cp=1 kJ kgk	
		01 mark
	2	
	r s	
	figure :- P-V 4 T-s diagram of Esobaric process	
	$P_1 Y_1 = P_2 Y_2$	
	T_1 T_2	
	: $T_2 = V_2 \times T_1 \implies 0.112 \times 383$	01 mark
	VI 0.14	
	$T_2 = 306.4 \text{ K}$	
	1) Work done in compression of gas	
	$dw = P (V_2 - V_1)$	
	$= 1.5 \times 10^{5} \times (0.112 - 0.14)$	<i></i>
		01 mark
	= -4480 J	
	= -4.48 kJ	
	2) Heat given out by gas	
	$dg = dutdw = mcp(T_2 - T_1)$	01 mark
	$= 1 \times 1 \times (806.4 - 383)$ = -76.6 KJ.	
	= -76.6 KJ	
	생각에 실망 관련을 얻는 것을 것 같아요. 이렇는 것은 것은 것을 다 나라 있는 것이 없는 것이 없는 것이 없다.	
c)	A certain gas has $C_p = 1.968 \ kJ/kg K C_y = 1.507 \ kJ/kgK$. Find the	

	0.3m ³ capacity contain 2 kg of this the gas until the temperature is 100	-		
	in internal energy.			
Sol.	Q.4.c.			
501.	Solb			
	Given data:			
	Cp = 1.968 Ks kg kg k	3) Heat transfer = g =	01 mark each	
	Cy = 1.507 kJ k3 k	$g = m Cv (T_2 - T_1)$	answer	
	Constant volume, V1=0-3 m3	= 2×1:507 × (373-278)		
	m = 2 kg	=286.33 KJ 13		
	71 = 5" + 273 = 278 k			
	T2 = 100 c+273=373 K	Ale to first low of thermodynamics		
	Find, Work done (W)	dg= AU+W .		
		but N=0		
	Woat transfer (g) 4	., do au		
	Change in internal energy (du)	4) change in internal energy		
	DGas constant, R=CP-Cy	5		
	=1.968-1.507	AU = 286.33 ES Eg		
	= 0.441 K3 13'K	Heat Supplied & used to		
	= 0.441 +3[13 k	increased the Internal energy.		
	.: MR = 8:3143	mareased the marine energy.		
	Molecular weight a			
	M = 8.3143			
	0.461			
	=18 kg			
	2) Nonk done = W= Pdv			
	As constant volume Chamber			
	dv = 0			
	So, Work done = W = O			
d)	Define: i. Transmissivity ii. Black body iii. Grey body iv. Reflectivity			
Sol.	Transmissivity:		01 mark each	
	It is the fraction of energy which is transmitted through the body.			
	Or			
	The ratio of amount of energy transmitted to the amount of energy incident on a body.			
	Black body: A black body is an object that a surface from all the direction with all the way		ts	
	Grey Body: A gray body is defined as a body vary with variation in temperature and waveled			

		02 marks Page 11 of 15
	Inside temp T1 =140° C , Outside temp T2 =40° C , Ksteel = 24 W/Mk $Q = \frac{T1 - T2}{\frac{1}{2\pi LK} \log \frac{r2}{r1}}$	02 marks
So	,d2= 8 cm	
C	conductivity of steel is 24 <i>W/mk</i> . Calculate the rate of heat transfer through the pipe if length of pipe is 1.5 m.	
	has inside temperature 140°C and outside' temperature 50°C. The thermal	
b)	A s t e e l pipe of inner and outer diameter 6 cm and 8 cm respectively	
	6. Loss due to moisture 7.carry over losses	
	5. Radiation loss	
	4. Loss due mechanical friction	
	3. Leakage loss	
	2. Loss due to friction	
	1. Residual velocity loss	
a) S(
Q.5. a)	Attempt any <u>TWO</u> of the following: List out any six losses in steam turbine.	
05	Figure: Surface Condenser	12 Marks
	Condensate to extraction pump	
	Water / Inter	
		label.
		02 marks for
	Baffle plate	
		Sketch
	Water Tubes Plate	02 marks for
Sol.	Exhaust steam	
e)	Draw a neat sketch of surface condenser and label it.	
	a body.	
	Reflectivity: It is defined as the ratio of amount of energy reflected to the amount of energy incident on	
	between 0 to 1.	

	$Q = \frac{140 - 40}{1}$	02 marks
	$Q = \frac{1}{(2\pi x 1.5x24)} \log \frac{4}{3}$	02 marks
	$a = \frac{100}{100}$	
	$Q = \frac{1}{1.272 \times 10^{-3}}$	
	Q =78616.35 Watts or 78.62 KW	
c)	List any SIX methods of energy conservation in boilers.	
Sol.	List any six methods of energy conservation in boilers	01 mark each
	Following methods can conserve energy in boilers	
	1) Reduction radiation and convention losses	
	2) Waste heat recovery for heating to the feed water.	
	3) Continues monitoring of flue gases losses and other losses	
	4) Using standard efficient fuel firing equipments, burners, mechanical stockers.	
	5) Scheduling boiler operation to avoid fluctuation in boiler load	
	6) Installation of variable speed drives.	
	7) Optimise boiler stem pressure and temperature	
	8) Periodic energy audit.	
	Periodic preventive maintenance of all components.	
6.	Attempt any <u>TWO</u> of the following:	12 Marks
a)	Explain the necessity of compounding in steam turbine and draw a neat	
	sketch of pressure velocity compounding.	
Sol.	Necessity of compounding in steam turbine: Compounding of steam turbines is	
	necessary 1) To reduce speed of rotor blades to practical limits.	
	2) To reduce centrifugal force and hence to prevent failure of blades.	03 marks
	3) To reduce velocity of steam leaving blades.	
	If entire pressure drop from boiler pressure to condenser pressure is carried out in a single	
	stage of nozzle then the velocity of steam entering the turbine blades will be very	
	high. The turbine speed has to be also very high as it is directly proportional to steam	
	velocity. Such high rpm of turbine rotor are not useful for practical purposes & there is a	
	danger of structural failure of blades due to excessive centrifugal stresses. Hence	
	compounding is carried out.	
	Neat sketch of pressure velocity compounding.	
	- · · · · · · · · · · · · · · · · · · ·	
		03 marks for
		figure

	In a full cycle of a refrigerator, three things happen:	
	1. Heat is absorbed from cold body, the heat can be called Q2.	
	2. Some of the energy from that input heat is used to perform work (W).	
	3. The rest of the heat is rejected to hot body (Q1).	
	An performance of the refrigerator can be calculated as: Efficiency = Q1 / work W	
	So it is cleared that the external energy is required to absorb heat from cold body and to	
	reject it to hot body.	
	Function of condenser:	02 marks
	1) To maintain a very low back pressure so as to obtain the maximum possible	
	energy from steam and thus secure a high efficiency.	
	2) To condense the steam and reuse it to supply as pure feed water to the hot well	
	from where it is pumped back to the boiler.	
	3) To remove of air and non-condensable gases	
c)	Derive characteristic gas equation using Boyle'S and Charle's law.	
So		
	Let us consider a unit mass of an ideal gas to change its state in following two processes as	01 mark for
	shown in fig.	each step
	P = C	
	1 2'	
	T = C	
	V	
	How process 1.2? is at constant process	
	Here, process 1-2' is at constant pressure	
	Process 2'-2 is at constant temperature	
	Now, applying Charle's law for process 1-2'	
	We get	
	$\frac{V1}{T1} = \frac{V2'}{T2} as(T2' = T2) \dots \dots (l)$	
		01 mark
	Now, applying boyle's law for process 2'-2, P2' V2 =P2 V2 (T=C)	
	$P_2 V_2 = P_2 V_2$ (1=C) $P_1 V_2 = P_2 V_2$ (As $P_2 = P_1$)	
	$V2' = \frac{P2V2}{P1}$ (II)	01 mark
	Substituting eq (II) IN eq (I), We get	
	V1 P2 V2	
	$\frac{1}{T1} = \frac{1}{P1} \frac{1}{T2}$	
		1

	$\frac{P1V1}{P1} = \frac{P2V2}{P2}$	
	T1 T2	
	i.e	
	$\frac{PV}{T} = Constant = R \dots \dots \dots \dots (III)$	
	consider m kg of gas, multiply eq (IIII) by m	
	$\frac{mxPV}{T} = Rx m$	
	PV	
	$\frac{FV}{T} = Rx m here V = Vm = total volume$	
	Therefore PV = m R TCHARACTERISTIC	
	EQUATION	