MODEL ANSWER
 SUMMER- 19 EXAMINATION

Subject Title: Linear Integrated Circuits

Subject Code:17445

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers:	Marking Scheme
Q. 1		Attempt any Six:	12M
	i)	Define : 1)CMMR 2) Slew Rate	2M
	Ans:	CMRR: It defined as the ratio of differential gain to the common mode gain. OR It is the ability of an amplifier to reject the common mode signal. Ideally $\mathrm{CMRR}=\infty$. Slew Rate-: It is defined as the maximum rate of change of output voltage per unit time. Ideally Slew Rate $=\infty$	$\begin{aligned} & \hline \text { 1M } \\ & \text { each } \end{aligned}$
	ii)	Draw basic differentiator using op-amp.	2M
	Ans:		2M

	Ans:	1) On the basis of component used- active and passive filters(LC filers, RC filters) 2) On the basis of frequency range- AF (audio frequency) and $R F$ (radio frequency) filters. 3) On the basis of frequency response filters- high pass, low pass, band pass and band reject filters. 4) On the basis of nature of pass band and stop band- narrow band pass, wide band pass, narrow band reject and wide band reject filters.	
	viii)	Draw pin diagram of IC 565.	
	Ans:	Pin diagram of IC 565	2M
b		Attempt any Two of the following:	8M
	i)	Draw and explain ideal voltage transfer characteristics of op-amp.	4M
	Ans:		2M

	Ideal voltage transfer characteristics of an ideal OP- AMP Voltage transfer curve of practical OP- AMP Explanation:- Output voltage V_{0} is plotted against input difference voltage V_{id}, Keeping gain A constant. 1) The output voltage cannot exceed the positive and negative saturation voltages. The saturation voltages are specified by an output voltage, swing rating of the op-amp for giv values of supply voltage. 2) This means that the output voltage is directly proportional to the input difference voltage on until it reaches the saturation voltage and that thereafter output voltage remains constant. T1 curve is called ideal because output offset voltage is assume to be zero.	2M
ii)	Describe the function of input stage and level shifting stage of op-amp with its block diagram.	4M
Ans:	$($ Block Diagram $=\mathbf{2 M}$, Functions $=1 \mathrm{M}$ each $)$	2M

	Pass band Gain (Af) is given by $\mathbf{A}_{\mathrm{f}}=1+\mathbf{R}_{\mathrm{f}} / \mathbf{R}_{1}$ Here $\mathrm{Af}=2$ Therefore $2=1+\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1}$ $\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1}=1$ i.e $R_{1}=R_{f}$ (any value of in $k \Omega$ can be assumed) Assume $\mathrm{R}_{1}=10 \mathrm{k} \Omega$, Therefore $\mathrm{R}_{\mathrm{f}}=10 \mathrm{k} \Omega$ Assume $\mathrm{C}=0.01 \mu \mathrm{~F}$ (any value of $\mathrm{C}<1 \mu \mathrm{~F}$ is valid) $\mathrm{F}_{\mathrm{c}}=1 / 2 \pi R C$ Given $\mathrm{Fc}=2 \mathrm{kHz}$ $\begin{aligned} & 2 \times 10^{3}=1 / 2 \pi \mathrm{RC} \\ & \mathrm{R}=1 / 2 \pi \times 2 \times 10^{3} \times 0.01 \times 10^{-6} \\ & \mathrm{R}=7.95 \mathrm{k} \Omega \end{aligned}$ Therefore designed value for low pass filter are $R=7.95 \mathrm{k} \Omega \& C=0.01 \times 10^{-6}$ Designed circuit:-	1M
e)	How the PLL can be used as multiplier?	4M
Ans	Circuit Diagram: Explanation: - Figure shows block diagram of a frequency multiplier using PLL. - A divide by N network is connected externally between the VCO output and phase comparator input.	2M

		- Since the output of the divider network is locked to the input frequency fs, - The VCO actually operates at a frequency which is N times higher than fs. Therefore, fo $=\mathrm{Nfs}$ - The multiplying factor can be obtained by proper selection of the scaling factor N .	
	f)	Draw and explain bistable multivibrator using IC -555.	4M
	Ans:	Diagram of IC-555: Waveform (optional) Explanation: - A device with two absolute stable states is possible. A Bistable multivibrator is a type of circuit which has two stable states (high and low). It stays in the same state until and unless an external trigger input is applied. - The trigger pulse will momentarily go low and the output of the timer at pin 3 will become HIGH. The output stays HIGH because there is no input from the threshold pin and the output of the internal comparator (comparator 1) will not go high. - The pin is internally connected to the RESET terminal of the flip-flop. When this signal goes low for a moment, the flip-flop receives the reset signal and RESETs the flip-flop.	$\mathbf{2 M}$
Q. 3	A)	Attempt any Four of the following:	16M
	a)	Draw neat diagram of integrator and obtain expression for output voltage	4M
	Ans:	Circuit Diagram:	2M

	Gain Bandwidth Application	Voltage gains is very high Bandwidth is low Comparator, zero crossing detector	Voltage gain is low as compared to open Bandwidth is high It is used in linear amplifier	
c) Ans:	Draw circuit Circuit Diag	liagram of Schmitt trigger using op m of Schmitt trigger:		4M
d)	Draw notch	ter with its frequency response		4M
Ans:	Circuit Diag Frequency R	m of Notch Filter: sponse of Notch Filter:	$\sum_{i}^{0 v_{0}}$	2M $2 \mathrm{M}$

(ISO/IEC - 27001-2005 Certified)

		- The motor will remain ON for the ON time of monostable circuit i. e. TON=1.1.R $\mathrm{R}_{\mathrm{A}} . \mathrm{C}$	
	f)	Draw and describe wein bridge oscillator using IC-741.	4M
	Ans:	Circuit Diagram: Wien Bridge Oscillator: Working: - The OP- AMP output is applied as an input voltage to the Wien Bridge between points A and C. The output of the Wien Bridge which acts as the feedback network is applied to the OPAMP input between points D and B. - The R and C components in the frequency sensitive arms of the bridge will decide the oscillator frequency. The expression for oscillator frequency is, $\mathrm{F}=1 / 2 \pi \mathrm{RC}$ - The resistor R3 gets connected in the feedback path of OP- AMP whereas resistor R4 get connected from the inverting (-) terminal to ground. Thus the amplifier configuration is called as the non-inverting amplifier. - The gain of this configuration is given by: $A=1+R_{3} / R_{4}$ - We know that at the oscillating frequency the value of feedback factor is $\beta=1 / 3$ and the gain should be $A \geq 3$. - Therefore, $\left(1+\mathrm{R}_{3} / \mathrm{R}_{4}\right) \geq 3$ - Therefore, $\mathrm{R}_{3} / \mathrm{R}_{4} \geq 2$ - Thus R_{3} should be greater than two times the value of R_{4} to ensure sustained oscillations. - The oscillator frequency can be varied by varying both the capacitors (C) simultaneously and the amplifier gain can be changed by changing the value of resistor R_{3}.	$\mathbf{2 M}$
Q. 4		Attempt any FOUR of the following :	16M
	a)	Draw closed loop inverting amplifier using op-amp derive expression for its gain.	4M
	Ans:	Inverting Amplifier using Op-Amp: Circuit Diagram:	2M

c)	Draw circuit and derive equation of two op-amp instrumentation amplifier.	4M
Ans:	Two Op-Amp Instrumentation Amplifier: Circuit Diagram: Derivation: Op amp $A_{\text {, }}$ is in non-inverting mode, $\therefore v_{01}=\left(1+\frac{R_{4}}{R_{3}}\right) v_{2} \text { (1) }$ $A s$ Op-amp A_{2} is a differential amplifier or subtractor $\therefore v_{0}=v_{0}+v_{0}$ $\therefore \quad v_{01}=-\frac{R_{2}}{R_{1}} \times v_{01}$ $V_{01}^{\prime \prime}-\left(1+\frac{R_{2}}{R_{1}}\right) V_{1}$ $\therefore V_{0}=-\frac{R_{2}}{R_{1}} V_{01}+\left(1+\frac{R_{2}}{R_{1}}\right) V_{1} \quad<\quad<2$ Putting equation (1) \& (2) we get, $V_{0}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{3}}\right) V_{2}+\left(1+\frac{R_{2}}{R_{1}}\right) V_{1}$ Assuming, $R_{4}=R_{1}, R_{3}=R_{2}$ $\begin{aligned} & \therefore R_{4}=R_{1} R_{3}=R_{2} \\ & V_{0}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{1}}{R_{2}}\right) V_{2}+\left(1+\frac{R_{2}}{R_{1}}\right) V_{1} \\ & \therefore V_{0}=-\left(1+\frac{R_{2}}{R_{1}}\right) V_{2}+\left(1+\frac{R_{2}}{R_{1}}\right) V_{1} \\ & \therefore V_{0}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(V_{1}-V_{2}\right) \\ & G_{\text {ain }}=A_{V}=\frac{V_{0}}{V_{1}-V_{2}}=1+\frac{R_{2}}{R_{1}} \end{aligned}$	2M
d)	Draw the second order high pass filter and describe its operation.	4M
Ans:	Second Order High Pass Filter:	

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Circuit Diagram: \\
Description: \\
- The resistors \(\mathrm{R}_{1}\) and \(\mathrm{R}_{\mathrm{F}}\) will decide the gain of the high pass filter. The gain can be made variable by keeping RF variable. \\
The cut- of trequency \(F_{c}\) is determined by \(R_{2}, R_{3}, C_{2}\) and \(C_{3}\) as follows:
\[
f_{c}=\frac{1}{2 \pi \sqrt{R_{2} R_{3} C_{2} C_{3}}}
\] \\
- The voltage gain magnitude is given by,
\[
\begin{aligned}
\& \left|\frac{V_{0}}{V_{\text {in }}}\right|=\frac{A_{V F}}{\sqrt{1+\left(F_{c} / F\right)^{4}}} \\
\& A_{V F}=1+\frac{R_{F}}{R_{1}}=\text { Passband gain of the filter. }
\end{aligned}
\] \\
- The frequency response of the second order filter. It shows that the gain increases at a rate of \(40 \mathrm{db} /\) decade in the attenuation band. This is doubled the rate of first order filter. This makes the frequency the frequency response sharper. \\
- The second order filters are important because they can be used for designing the higher order filters.
\end{tabular} \& 2M

2M

\hline e) \& | Draw transfer characteristics of PLL. Define: |
| :--- |
| i) Lock range and |
| ii) Capture range of PLL. | \& 4M

\hline Ans: \& Transfer Characteristics of PLL: \& 2M

\hline
\end{tabular}

	 Lock range: The range of frequencies over which the PLL can maintain the phase lock with the incoming signal Fs, is defined as the lock in range. $\text { Lock range }=F_{L}=2 \Delta F_{L}$ Where $\mathrm{F}_{\mathrm{L}}=8 \mathrm{~F}_{0} / \mathrm{V}$ Capture range : It is defined as the range of frequencies over which the PLL can acquire lock with the input signal Fs Where $\mathrm{F}_{\mathrm{C}}=\mathrm{F}_{\mathrm{L}} /(2 \pi * 3.6 * 103 * \mathrm{C})$	$1 M$ $1 M$
f)	Draw and Explain working of phase shift oscillator using IC-741.	4M
Ans:	Phase Shift Oscillator using IC-741: Circuit Diagram: Explanation : - The Op- Amp is used as an inverting amplifier. Therefore it introduces a phase shift f 180° between its input and output.	2M

Q. 5		Attempt any FOUR of the following :	16M
	a)	With neat diagram explain the concept of frequency compensation and offset nulling	4M
	Ans:	Frequency compensation: In practice all possible efforts are made to convert the multiple break frequency op-amp (uncompensated) into the single break frequency of op-amp using some technique, This technique, is called as frequency compensation. Thus the technique of modifying the loop gain frequency response of the system op-amp from multiple break frequency to the single break frequency to ensure stability is called as frequency compensation	2M
		Offset nulling: An offset voltage exists because a real op-amp can't be ideal. There will always be some unintended asymmetries due to random variation in manufacturing. In all cases, there are opamp designs that can minimize these errors, but usually at the expense of some other parameter, like cost. It can be safely ignored in AC applications, where this offset will be ignored by the AC coupling. It becomes more important in DC applications, especially amplifiers, since this DC error will be amplified by the next stage. An offset voltage exists because a real omp-amp can't be ideal.	2M

	f)	State the principle of oscillator. Write its necessity conditions.	4M
	Ans:	Principle of oscillator:- - An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. - Oscillators convert direct current (DC) from a power supply to alternating current (AC) signal and works with positive feedback principle. Necessity conditions:- 1. The magnitude of the product of open loop gain of the amplifier and the magnitude of the feedback factor is unity, i.e., $\|\beta \mathrm{A}\|=1$ where A is the gain of the amplifying element in the circuit and β is the feedback Network. 2. The total phase shift around the loop is 00 or integral multiples of 2π. Feedback Network	2M
Q. 6		Attempt any FOUR of the following :	16TM
	a)	Draw and explain the circuit of V to I converter with floating load using op-amp.	4M
	Ans:	Circuit Diagram The load resistor R_{2} is floating in, not connected to ground. The input voltage is applied to the non-inverting input terminal and the feedback voltage	2M

		across R_{1} drives the inverting terminal. Writing KVL to the input loop, $\begin{aligned} & \mathbf{V}_{\text {in }}=\mathbf{V}_{\mathbf{i d}}+\mathbf{V}_{\mathbf{F}} \\ & \text { But } \mathbf{V}_{\mathbf{i d}}=\mathbf{0} \mathbf{V} \text { since A is very large, } \\ & \mathbf{V}_{\mathbf{i n}}=\mathbf{V}_{\mathbf{F}} \\ & \mathbf{V}_{\mathbf{i n}}=\mathbf{R}_{\mathbf{1}} \mathbf{I}_{\mathbf{0}} \end{aligned}$ OR $\mathrm{I}_{0}=\frac{\mathrm{Vin}}{\mathrm{R} 1}$ Output current is proportional to input voltage. Input voltage is converted into an output current.	
	b)	Explain how active filter is better than passive filter.	4M
	Ans:	Advantages of active filters over passive filters:- 1. Active filters have flexibility in gain and frequency adjustments. 2. They provide pass band gain. 3. Because of high input resistance and low output resistance, they do not have loading problems. 4. The components required for active filters are of smaller size. 5. They do not exhibit any insertion loss. 6. Due to absence of inductors and easy availability of variety of cheaper op-amps active filters are cheaper. 7. They allow for interstate isolation and control of input and output impedance.	$\begin{aligned} & \text { Any } 4 \\ & \text { Each } \\ & \text { 1M } \end{aligned}$
	c)	Draw block diagram of IC 555. Explain the use of pin 2 and 6.	4M
	Ans:	(Block Diagram=2M, Explanation=2M) Block Diagram: (Pin no 2)Trigger:- This is the inverting terminal of comparator C 2 which monitors the voltage across the external capacitor. When the voltage at this pin goes below or equal to $1 / 3$ VCC, the output of comparator C 2 goes low which in turn switches the output of the timer to high. (Pin no 6)Threshold:- This is non- inverting terminal of comparator C 1 which monitors the	

	voltage across the external capacitor. When the voltage at this pin is greater than or equal to $2 / 3 \mathrm{VCC}$, the output of comparator C1 goes high which in turn switches the output of the timer low.	
d)	Describe the operation of phase detector and role of VCO in PLL.	4M
Ans:	Voltage controlled oscillator(VCO): - The control voltage V_{C} is applied at the input of a VCO. - The output frequency of VCO is directly proportional to the dc control voltage V_{C}. The VCO frequency f_{0} is compared with the input frequency $f_{i n}$ by the phase detector and $\mathrm{it}\left(\mathrm{VCO}\right.$ frequency) is adjusted continuously until it is equal to the input frequency f_{in} $\mathrm{f}_{0}=\mathrm{f}_{\text {in }}$ - The voltage controlled oscillator (VCO) is a free running multivibrator and operates at frequency f_{0}. Which is determined by external timing capacitor and external resistor. - The operating frequency can be shifted on either side by applying a dc control voltage V_{C} externally. Phase detector or phase comparator: - The two points to a phase detector or comparator are the input voltage V_{S} at frequency sand the feedback voltage from a voltage controlled oscillator(VCO) at the frequency F_{0}. - The phase detector compares these two signals and produces a dc voltage $\mathbf{V}_{\mathbf{e}}$ which is proportional to the phase difference between $\mathrm{F}_{\text {in }}$ and F_{0}. The output voltage of the phase detector is called as error voltage. This error voltage is then applied to a low pass filter.	2M
e)	How monostable multivibrator can be used as frequency divider?	4M
Ans:	Circuit Diagram: Explanation: - The Monostable multivibrator can be used as frequency divider by adjusting the length of the timing cycle t_{o} with respect to time period T of the trigger input signal applied to pin 2. - To use the Monostable multivibrator as divide by 2 circuit, the timing interval t_{0} must be slightly larger than the time period T of the trigger input signal as shown in figure above	2M

		\bullet Thus the frequency can be changed by changing the control voltage.	

