(ISO/IEC - 2700 rtified)

Subject Name: Analog communication

MAHARASHT (Autonomous)

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

17440

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	a)	Attempt any SIX of the following:	12- Total Marks
	(i)	Define: Base band signal with one example.	2M
	Ans:	The electrical equivalent of the original information signal is known as the Baseband signal.	(Correct definitio
		Example:-The information or the input signal to a communication system can be analog i.e., sound, picture or it can be digital e.g. the computer data.	n – 1M, 1 ex1M)
	(ii)	State the need of modulation.	2M
	Ans:	Need of Modulation :-	Any 4 correct
		i)Reduction in the height of antenna	needs - 2M
		ii) Avoids mixing of signal	
		iii) Increases range of communication.	
		iv) Multiplexing is possible	

Subject Name: Analog communication

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

17440

(iii)	Define modulation index in AM and give its formula.	2M
·/		
Ans:	In AM wave, the modulation index (m) is defined as the ratio of the amplitude of the	Correct
	modulating signal (Vm) to the amplitude of carrier signal (Vc).	definitio
	m = Vm / Vc	n 1 marks,
		formula
		1mark
(iv)	State the super heterodyne principle.	2M
Ans:	The process of mixing two signals having different frequencies to produce a new frequency	2M
	i.e., to convert all the incoming frequencies to a lower frequency known as intermediate frequency (IF).	
	The super heterodyne principle is based on frequency conversion or frequency down	
	conversion.	
(v)	State the need of AGC.	2M
Ans:	Need of AGC:-	2M
	• The need or purpose of AGC circuit is to maintain the output voltage level (volume) of	
	radio receiver constant over a wide range of RF input signal level.	
	 AGC also helps to smooth out the rapid fading which may occur with long distance short wave reception & prevents overloading of the last IF amplifier which might otherwise have occurred 	
(vi)	Define standing wave ratio.	2M
Ans:	Standing wave ratio is defined as the ratio of maximum voltage (Vmax) to minimum voltage	(Correc
	(Vmin).	definiti
	Standing wave ratio is also defined as the ratio of maximum current (Imax) to minimum	n – 2
	current (Imin).	marks)
(vii)	Define the terms:	2M
	1) Maximum usable frequency	

MAHARASHT (Autonomous) (ISO/IEC - 2700 rtified)

Subject Name: Analog communication

and a دلألأد

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

17440

Ans:	1) Maximum usable frequency:- Maximum usable frequency is defined as the limiting frequency , when the angle of incidence is other than the normal .	1-M for each
	OR The highest frequency that can be used for sky wave communication between two	definitio
	given points on earth is known as maximum usable frequency.	n
	2) Fading:- The fluctuation in signal strength at a receiver, which is mainly due to the	
	interference of two waves which left the same source but arrived at the destination	
	by different paths is known as fading.	
(viii)	What is skip distance?	2M
Ans:	ii) Skip distance: The skip distance is defined as the shortest distance from a transmitter, measured along the surface of earth at which a sky wave of fixed frequency returns back to the	(Correct
	earth.	-2M
	The frequency should be greater than critical frequency fc.	2.01)
	5 4 The second rays 5 4 The second rays 6 Upper rays	
	Skip distance Effects of Ionosphere on Rays of Varying Distance	
		00 7.1
b)	Attempt any TWO of the following:	08- Tota Marks

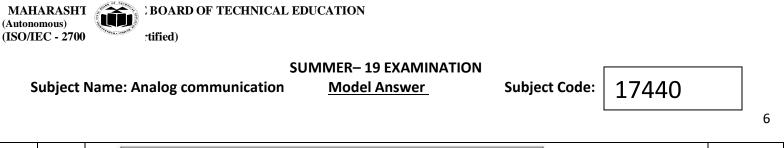
Subject Name: Analog communication

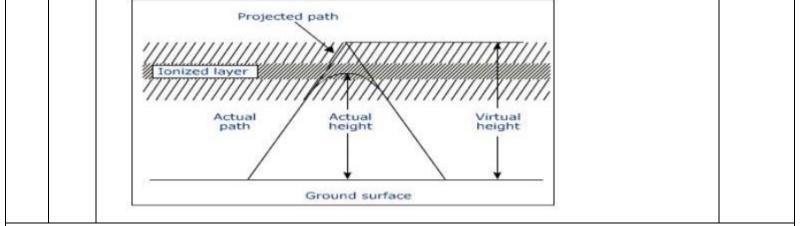
Subject Code:

17440

Ans	Sr. No.	Simplex	Duplex	
	1.	It is one way communication	It is a two way communication	
	2.	Information is communicated in only one direction.	Information can transmit as well as receives simultaneously or not simultaneously.	
	3.	Examples- TV broadcasting, radio broadcasting, telemetry, remote control	Examples- Walky talky, telephone, mobile, Radar, FAX, Pager	Each correct point -
	4.	Terminal A Transmission in only one direction (a)	Terminal A Or Transmission in either direction, but not simultaneously (b)	1M
			Terminal A Transmission in both directions simultaneously (c)	
(ii)	Draw the	e structure of horn antenna and its radia	tion pattern. List its any two applications.	4M
Ans	: The s	tructure of horn antenna		(diagram – 2 M, Radiatio n pattern 1M,2 apllicatio ns 1M)

SUMMER- 19 EXAMINATION


Subject Name: Analog communication


Subject Code:

17440

] 5

· · · · · · · · · · · · · · · · · · ·		1
	(b) Pyramidal (c) Conical	
	Radiation pattern of Horn Antenna Elevation: 3 dB beamwidth = 56 h*/dz Azimuth: y 3 dB beamwidth = 70 h*/dz Application:- i) Used at microwave frequency.	
(iii)	 ii) Used in satellite tracking Explain the following in wave propagation: 1) Actual height 2) Virtual height 	4M
Ans:	 1) Actual height:- The height attained by the wave during propagation through the ionosphere is known as Actual height. 2)Virtual height: -The incident wave returns back to the earth due to refraction. In this process it bends down gradually and not sharply .But the incident and reflected rays follow exactly the same paths as those if the signal have been reflected from a surface located at greater height. It is the height above the earth's surface from which a refracted wave appears to have been reflected. It is also defined as the maximum height that the hypothetical reflected wave would have reached. 	(Each definitio n- 1M,diagr am-2M)

Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any FOUR of the following::	16- Total Marks
	a)	List the types of noise in communication system. Explain any one of them.	4M
	Ans:	Noise External Internal Atmospheric Man-made Shot Thermal Transit time Flicker Partition noise noise <	(Any 4 types list 2 M, any 1 type explanati on 2 M)

tified)

Subject Name: Analog communication

MAHARASHT

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

17440

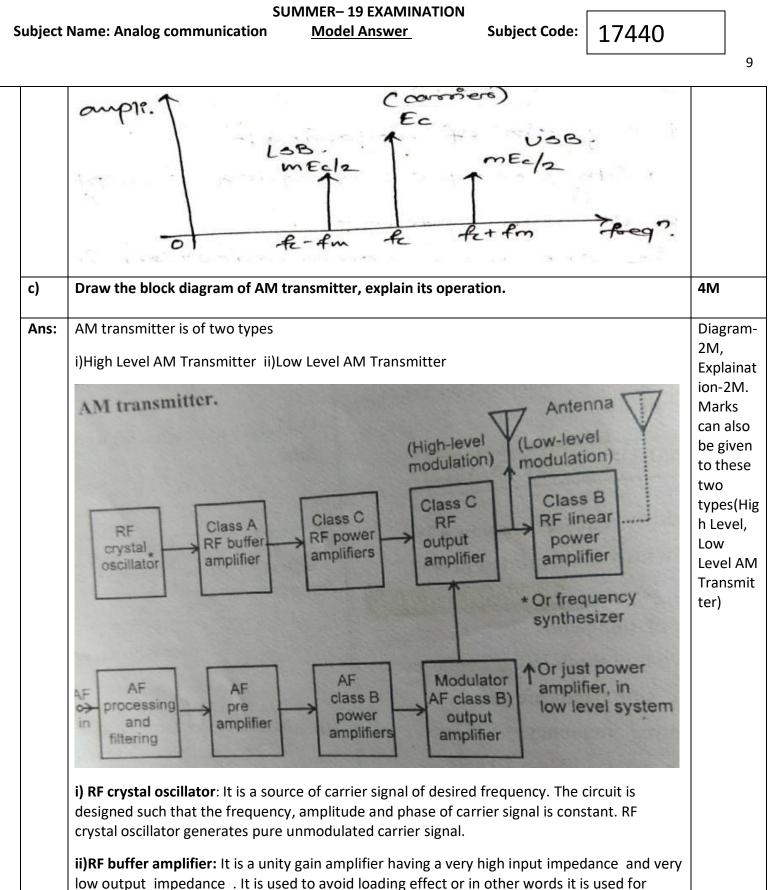
sources. However, these may be put into following two subgroups.	
1. Solar noise	
2. Cosmic noise	
Solar Noise:-	
This is the electrical noise emanating from the sun. Under quite conditions, there is a steady radiation of noise from the sun. This results because sun is a large body at a very high temperature and radiates electrical energy in the form of noise over a very wide frequency spectrum including the spectrum used for radio communication.	
Cosmic noise:-	
Distant stars are also suns and have high temperatures. These stars, therefore, radiate noise in the same way as sun. The noise received from these distant stars is thermal noise (or black body noise) and is distributing almost uniformly over the entire sky. We also receive noise from the center of our own galaxy from other distant galaxies.	
Man-Made Noise (Industrial Noise):-	
Man-made noise or industrial- noise is meant the electrical noise produced by such sources as automobiles and aircraft ignition, electrical motors and switch gears, leakage from high voltage lines, fluorescent lights, and numerous other heavy electrical machines.	
Explanation of Internal Noise:- Thermal Noise:-	
Conductors contain a large number of 'free" electrons and "ions" strongly bound by molecular forces. The ions vibrate randomly about their normal positions, however, this vibration being a function of the temperature. Continuous collisions between the electrons and the vibrating ions take place. Thus there is a continuous transfer of energy between the ions and electrons. This is the source of resistance in a conductor. There is a random motion of the electrons which give rise to noise voltage called thermal noise.	
Shot Noise:-	
The most common type of noise is referred to as shot noise which is produced by the random arrival of 'electrons or holes at the output element of PN junction.	
Transit Time Noise:-	
Another kind of noise that occurs in transistors is called transit time noise. Transit time is the duration of time that it takes for a current carrier such as a hole or current to move from the	

rtified)

Subject Name: Analog communication

MAHARASHT

(Autonomous) (ISO/IEC - 2700


SUMMER-19 EXAMINATION

Model Answer

Subject Code:

17440

	input to the output.	
	Flicker Noise:-	
	Flicker noise or modulation noise is the one appearing in transistors operating at low audio frequencies.	
	Transistor Thermal Noise:-	
	Within the transistor, thermal noise is caused by the emitter, base and collector internal resistances	
	Partition Noise:-	
	Partition noise occurs whenever current has to divide between two or more paths, and results from the random fluctuations in the division.	
b)	Draw amplitude modulated waveform in time domain and frequency domain with proper labeling.	4M
	AM in Time domain	2 M
	LECTEM ECHANDARA AND THE TOWNS	
	AM in frequency domain	2M

impedance matching. If RF crystal oscillator is directly connected to the RF power amplifier,

Page 9/

Subject Name: Analog communication

Subject Code:

17440

	then due to loading effect, frequency of carrier signal may change.	
	iii) Class C power amplifier: It is a high power frequency class C amplifier. It is used to increase the power level of carrier signal. Class C amplifier is used because it has very high efficiency is greater than 70%.	
	iv) Modulator: Modulator is also a class C amplifier in which modulating signal of sufficient amplitude is added with the carrier signal to obtain amplitude modulated carrier signal. This high power high frequency AM signal is then applied to the transmitting antenna which radiates this AM signal into air or space.	
d)	Define:	4M
	(i) Image frequency and (ii) Double spotting	
Ans:	i)Image frequency:-	Each
	Image Frequency is defined as the signal frequency plus twice the intermediate frequency. It is denoted as $\mathbf{f}_{si} = \mathbf{f}_{s+2}\mathbf{f}_{i}$	definitio n-2M
	Where,	
	f s = Signal Frequency	
	f i =intermediate frequency.	
	ii)Double spotting:-	
	Double spotting means the same stations get picked up at two different nearby points, on the receiver dial.	
	It is due to the poor front end selectivity i.e., inadequate image frequency rejection.	
e)	State and explain the losses in transmission line.	4M
Ans:	Losses in Transmission Line:- There are three ways in which energy, applied to a transmission may desperate before reaching the load. They are	Note:- I only list of losses is writte
	1) Radiation Losses:-	give 1M
	• Its occurs when a transmission line may act as an antenna when the separation of the conductor is an appreciable fraction of a wave length .	Types- with

MAHARASHT (Autonomous) (ISO/IEC - 2700

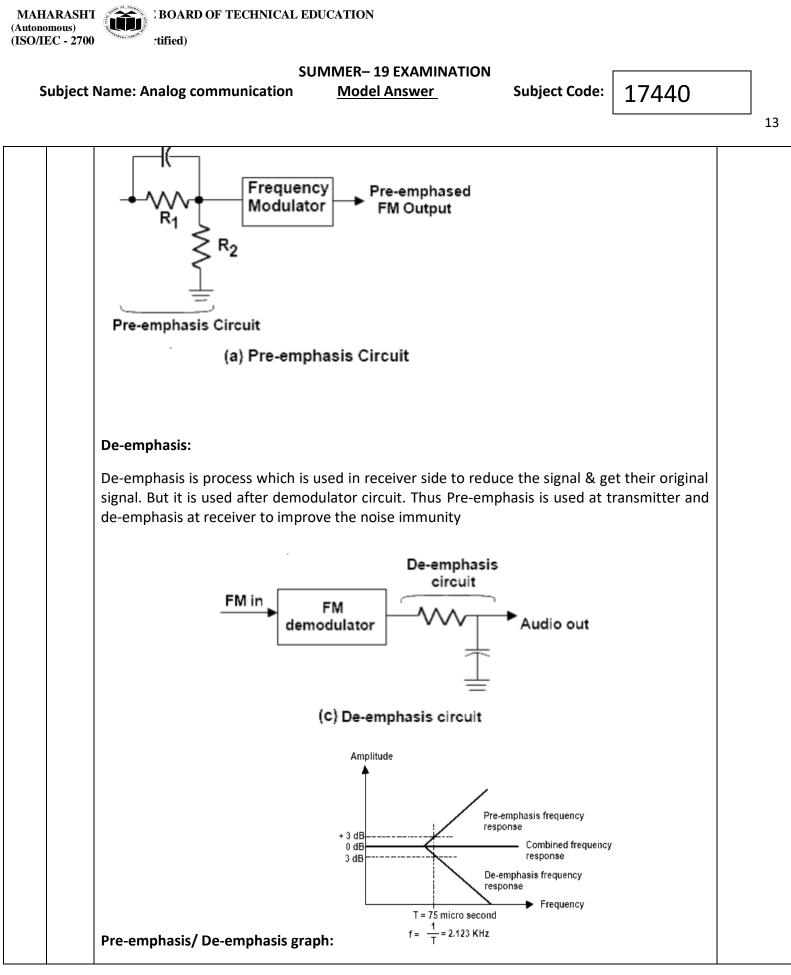
tified)

Subject Name: Analog communication

and a

SUMMER-19 EXAMINATION

Model Answer

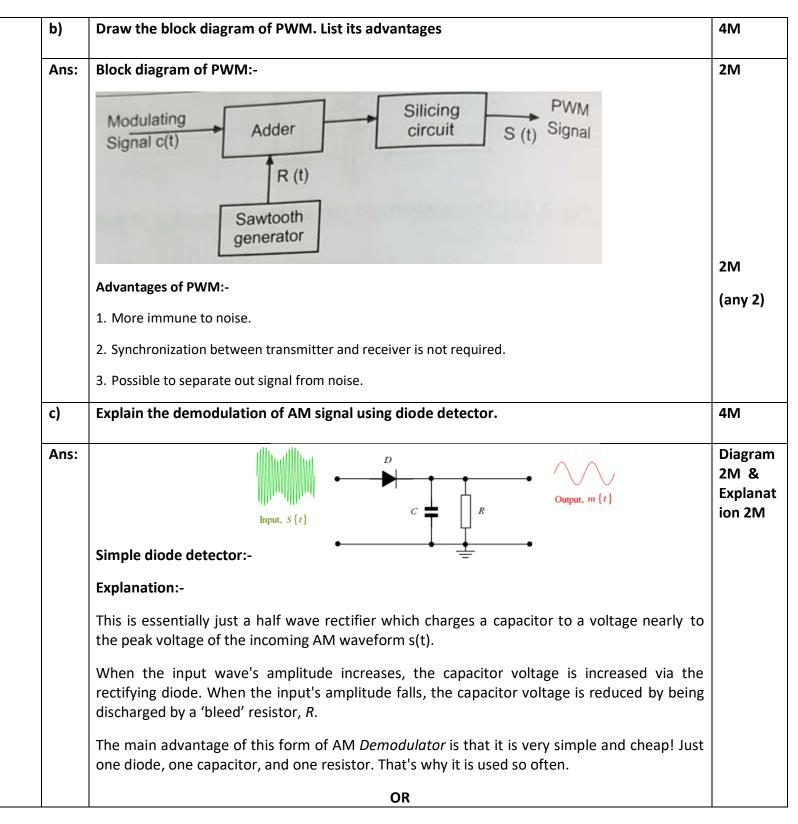

Subject Code:

17440

	• This loss increase with frequency for any given transmission line eventually ending that lines usefulness at some high frequency.	explaina ion-4M
	• This loss is more in parallel wire lines than to coaxial lines.	
	2) Conductor Or I ₂ R loss:-	
	• This loss is proportional to the current and their fore inversely proportional to characteristics impedance	
	• It also increases with frequency, this time because of the skin effect.	
	3) Dielectric loss:	
	• This loss is proportional to the voltage across the dielectric and hence inversely proportional to the characteristic impedance for any power transmitted.	
	• It again increases with frequency because a gradually worsening properties with increasing frequency for any given dielectric medium.	
	4) Corona Effect:-	
	• Corona is a luminance discharge that occurs between the two conductors of a transmission line when the difference of proportional between them exceeds the break down voltage of the dielectric insulator.	
	Generally when corona occurs, the transmission line is destroyed.	
f)	Draw the radiation pattern for Dipole antenna:	4M
	(i) Half wave dipole	
	(ii) Folded dipole.	
Ans:	The radiation pattern for Half wave dipole antenna	2 mark for eac
	180	
	\bigcirc	
	270 900	
	0°	

BOARD OF TECHNICAL EDUCATION MAHARASHT (Autonomous) (ISO/IEC - 2700 tified) **SUMMER-19 EXAMINATION** Subject Name: Analog communication Subject Code: 17440 Model Answer 12 Angle θ Field Strength Side View Short Dipole The radiation pattern for Folded dipole antenna.

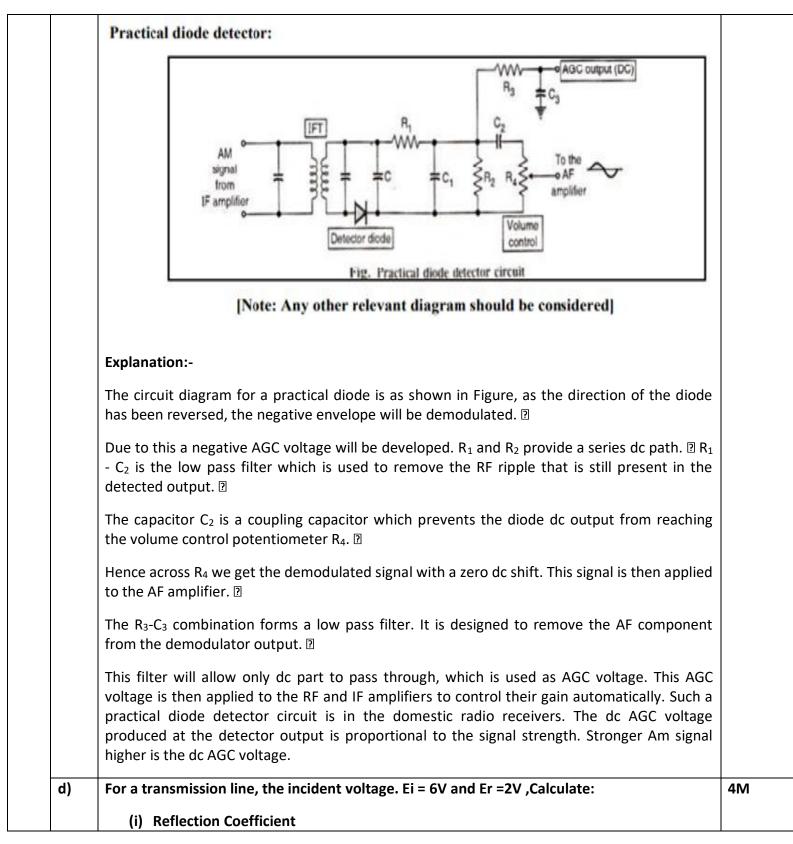
Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR of the following:	16- Total Marks
	a)	Explain pre-emphasis and de-emphasis concept in FM.	4M
	Ans:	Pre-emphasis:-	Diagram
		In an FM system the higher frequencies contribute more to the noise than the lower	2M & Explanat
		frequencies. Because of this all FM systems adopt a system of pre-emphasis where the higher	ion 2M
		frequencies are increased in amplitude before being used to modulate the carrier.	
		Pre-emphasis is a process which is used in transmitter side to boosting the amplitude of	
		higher modulating signal before modulator. IF we used it after the modulator than carrier	
		&modulator signal will mixed and it is difficult to verify which one is the modulating signal.	


Page 13/

Subject Name: Analog communication

Subject Code:

17440



SUMMER-19 EXAMINATION

Subject Name: Analog communication

Model Answer Subject Code:

^{le:} | 17440

tified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

> SUMMER- 19 EXAMINATION Model Answer

Subject Name: Analog communication

Subject Code:

e: | 17440

	(ii) SWR	
Ans:	Reflection Coefficient(K) = Er / Ei	Each
	= 2V / 6V	2M
	K = 0.333	(formula
	SWR = 1+K / 1- K	1M & correct
	= 1+0.333 / 1-0.333	answer
	= 1.333 / 0.667	1M each)
	SWR= 1.998	-
e)	Explain the transverse electromagnetic waves in wave propagation.	4M
Ans:	1. The electromagnetic waves are oscillations, which propagate through free space.	2M
	2. Em wave travel in free space at the speed of light.	
	3. Figure shows the simple EM wave, in which the direction of electric field, magnetic field and propagation are mutually perpendicular to each other.	
	4. The EM waves are transverse in nature i.e. oscillations are perpendicular to the direction of waves so the name transverse electromagnetic waves (TEM).	
	Diagram:- Transverse electromagnetic wave(TEM)	2M
	X Electric (Vx) Field Magnetic field (Hy) Y OR	

MAHARASHT (Autonomous) (ISO/IEC - 2700

> SUMMER- 19 EXAMINATION Model Answer

Subject Name: Analog communication

Subject Code:

e: 17440

	An estimate to the second seco	
f)	\perp An antenna has a radiation resistance of II U a loss resistance of X U and a nower gain of	21/1
f)	An antenna has a radiation resistance of 72 Ω a loss resistance of 8 Ω and a power gain of 16. Find efficiency and directivity.	4M
•	16. Find efficiency and directivity. Ition: Given: $R_d = 72 \Omega$ $R_{loss} = 8 \Omega$, $R_{rad} = 72 - 8 = 64 \Omega$	Each 21
f) Ans:	16. Find efficiency and directivity. Ition: Given: $R_d = 72 \Omega$ $R_{loss} = 8 \Omega$, $R_{rad} = 72 - 8 = 64 \Omega$ $A_p = 16$	Each 2I
•	16. Find efficiency and directivity. Ition: Given: $R_d = 72 \Omega$ $R_{loss} = 8 \Omega$, $R_{rad} = 72 - 8 = 64 \Omega$ $A_p = 16$ Efficiency:	Each 2
•	16. Find efficiency and directivity. 16. Find efficiency and directivity. 16. Find efficiency: R _d = 72 Ω R _{koss} = 8 Ω , R _{rad} = 72 - 8 = 64 Ω A _p = 16 $\eta = \frac{R_{rad}}{R_{rad} + R_d} = \frac{64}{64 + 72} \times 100 = 0.47 \times 100$	Each 21 (formula 1M & correct answer
•	16. Find efficiency and directivity. Ition: Given: $R_d = 72 \Omega$ $R_{loss} = 8 \Omega$, $R_{rad} = 72 - 8 = 64 \Omega$ $A_p = 16$ Efficiency:	Each 21 (formula 1M & correct
-	16. Find efficiency and directivity. 16. Find efficiency and directivity. 16. Find efficiency: R _d = 72 Ω R _{loss} = 8 Ω , R _{rad} = 72 - 8 = 64 Ω A _p = 16 Efficiency: $\eta = \frac{R_{rad}}{R_{rad} + R_d} = \frac{64}{64 + 72} \times 100 = 0.47 \times 100$ $\overline{\eta = 47\%}$ Directivity:	Each 2 (formula 1M & correct answer
-	16. Find efficiency and directivity. 16. Find efficiency and directivity. 16. Find efficiency: R _d = 72 Ω R _{loss} = 8 Ω , R _{rad} = 72 - 8 = 64 Ω A _p = 16 Efficiency: $\eta = \frac{R_{rad}}{R_{rad} + R_d} = \frac{64}{64 + 72} \times 100 = 0.47 \times 100$ $\boxed{\eta = 47\%}$ Directivity: A _p = n·D	Each 2 (formula 1M & correct answer
•	16. Find efficiency and directivity. 16. Find efficiency and directivity. 16. Find efficiency: R _d = 72 Ω R _{loss} = 8 Ω , R _{rad} = 72 - 8 = 64 Ω A _p = 16 Efficiency: $\eta = \frac{R_{rad}}{R_{rad} + R_d} = \frac{64}{64 + 72} \times 100 = 0.47 \times 100$ $\overline{\eta = 47\%}$ Directivity:	Each 2 (formula 1M & correct answer

Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any FOUR of the following::	16- Total Marks
	(a)	For AM, f _c =500kHz , f _m = 5 kHz Determine: (i) Upper and lower sideband frequencies (ii) Bandwidth	4M
	Ans:	Given data fc = 500KHz , fm = 5KHz	1.5 MARKS FOR

rtified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

> SUMMER- 19 EXAMINATION Model Answer

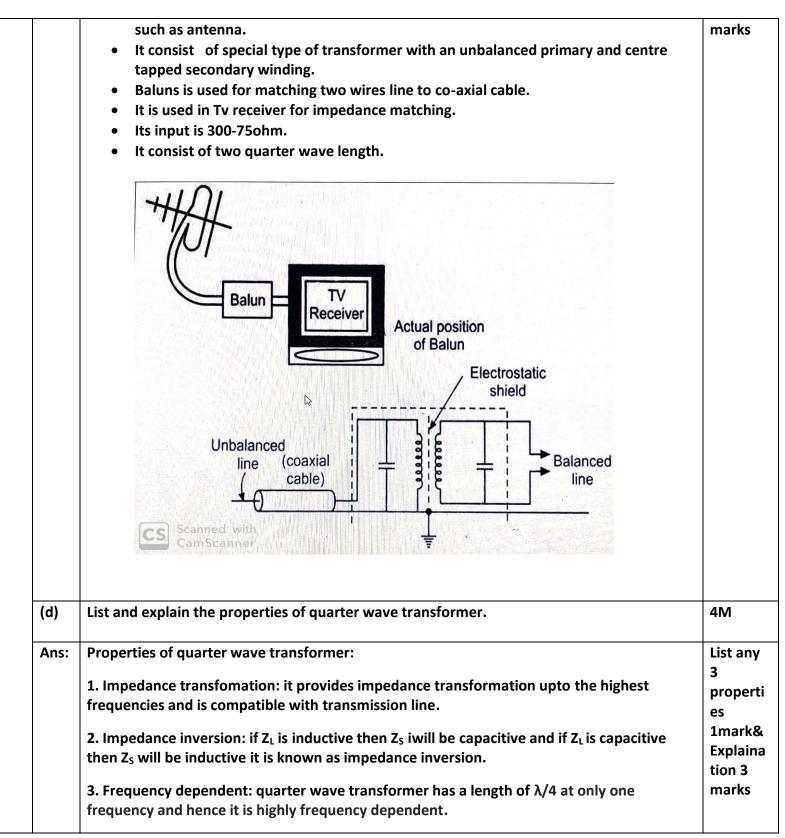
Subject Name: Analog communication

Subject Code:

17440

	USB =fc+fm			USB,1 MARI
	USB = 500+5			FORL
	=505 KHz.			&1 MAR
	LSB =fc – fm			FOR E
	LSB = 500 – 5			
	=495 KHz			
	Bandwidth = 2fm .			
	= 2* 5 =10 KHz			
(b)	Compare between FM and PN	1		4M
Ans:	PARAMETERS	FM	PM	Any
	1. Variable parameter of carrier.	Frequency	Phase	. point 4mar
	2. Variable parameter proportional to modulating voltage.	Frequency deviation	Phase deviation.	
	3. Amplitude of modulated signal.	Constant	Constant.	
	4. Noise immunity	Best of all schemes	Better than AM	
	5. Coverage area for transmitted power	More	Moderate	
	6. Signal to noise ratio	Best	Better	
(c)	Explain the use of baluns for i	mpedance matching.		4M
Ans:				Diagr
/113.		•		2 ma
	Balun stands for Balar			Expla
	It can also be used to c	connect the unbalanced tra	nsmission line to a balance load	tion 2

rtified)


MAHARASHT (Autonomous) (ISO/IEC - 2700

> SUMMER- 19 EXAMINATION Model Answer

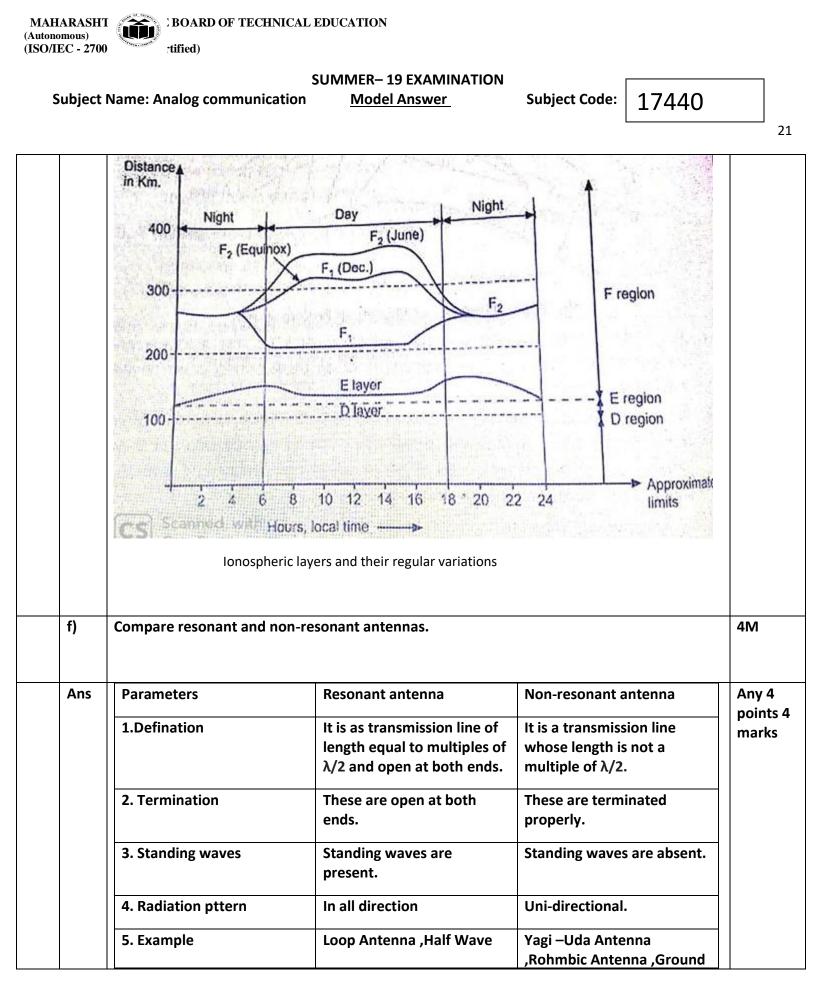
Subject Name: Analog communication

Subject Code:

17440

(Autonomous) (ISO/IEC - 2700 :tified)

Subject Name: Analog communication


MAHARASHT

SUMMER- 19 EXAMINATION Model Answer

Subject Code:

17440

	1	1
	4. quarter wave transformer act as step down or step up transformer, depending on whether Z_L IS greater than or less than $Z_{O.}$	
(e)	Describe the effect of ionosphere on sky wave propagation.	4M
Ans:	The Ionosphere is the upper portion of the atmosphere. The ultra violet radiation from the sun will ionize the upper layer of the atmosphere. In this layer free electrons and positive and negative ions are present and hence this layer of ions is known as ionosphere. There are four layers: D, E, F1 and F2.	Diagram 2 marks and Explaina tion 2 Marks
	1. D Layer: It is lowest layer at an height of 70 kms with thickness 10 km. The ionization density is maximum at noon and disappears at night.	
	2. E Layer: It is the next layer at an height of 100 kms with thickness 25 km. The layer disappears at night due to recombination of ions and molecules.	
	3. F1Layer: It is the next layer at an height of 180 kms with thickness 20 km. It provides more absorption for HF waves.	
	4. F2Layer: It is the next layer at an height of 250-400 kms with thickness 200 km. It is having highest electron density of all layers, due to this F2 layer remains present at night time.	
	Ionosphere Propagation:	
	In this propagation, the transmitted signal transmits into the upper atmosphere where it is bent i.e reflected back to earth. This bending of the signal takes place due to the presence of the ionosphere layer.	
	Its Frequency Range is from 3 MHz to 30 MHz	
	Polarization: Vertical.	
1		1

SUMMER-19 EXAMINATION

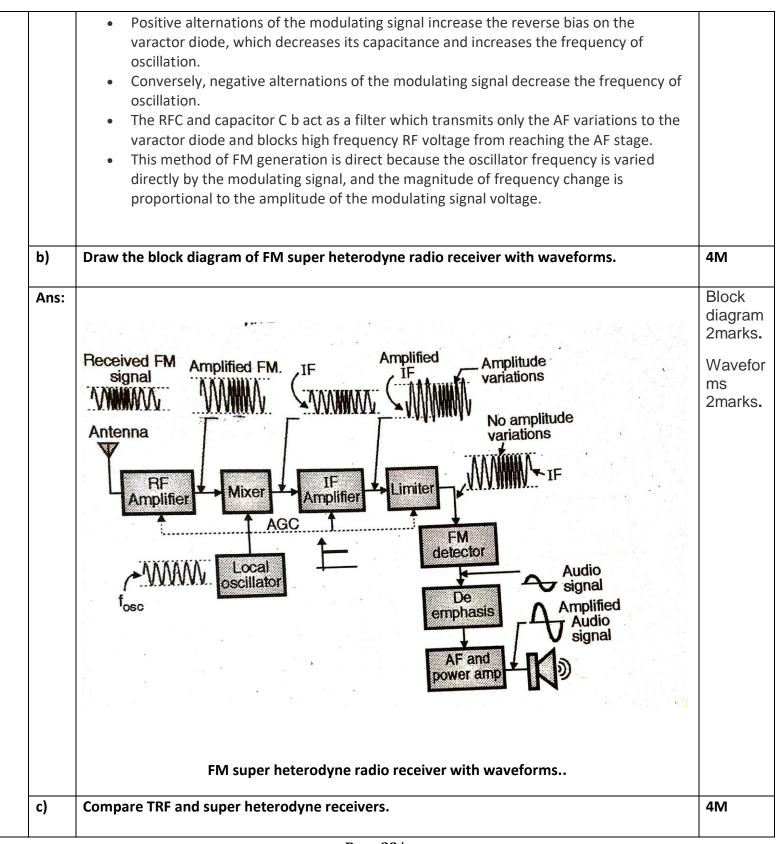
Subject Name: Analog communication

Model Answer

Subject Code:

17440

		dipole Antenna Antenna.	
Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
5.		Attempt any FOUR of the following:	16- Tota Marks
	a)	Draw the circuit diagram of varactor diode FM modulator and explain its working.	4M
	Ans:	 Varactor diode modulator is the direct method of FM generation wherein the carrier frequency is directly varied by the modulating signal. A varactor diode is a semiconductor diode whose junction capacitance varies linearly with applied voltage when the diode is reverse biased. Varactor diodes are used along with reactance modulator to provide automatic frequency correction for an FM transmitter. The varactor diode modulator circuit is shown in diagram for generation of FM wave. Composed of Example 1 (and the second of t	Diagram 2 marks and Explaina tion 2 Marks


Subject Name: Analog communication

(ISO/IEC - 2700 tified)

SUMMER-19 EXAMINATION Model Answer

Subject Code:

17440

Subject Name: Analog communication

Subject Code:

17440

Ans:	Sr no	TRF radio receiver	Super heterodyne radio receiver	Each
	1.	Simple radio receiver.	It has complex operation because of frequency conversion	_ point mark
	2.	Not a practical version	Practical version with some logical modification.	
	3.	It has problems like instability, insufficient adjacent frequency rejection and bandwidth variation.	Instability ,insufficient adjacent frequency rejection and bandwidth variation are not present because of additional components are present.	
	4.	Its selectivity and sensitivity is not uniform throughout its tuning range.	Its selectivity and sensitivity is uniform throughout its tuning range.	
d)		ameters of Transmission line are R = 50 . calculate characteristic impedance.	Ω/ km, L= 1mH/km ,C = 0.1μf/km, G =	4M

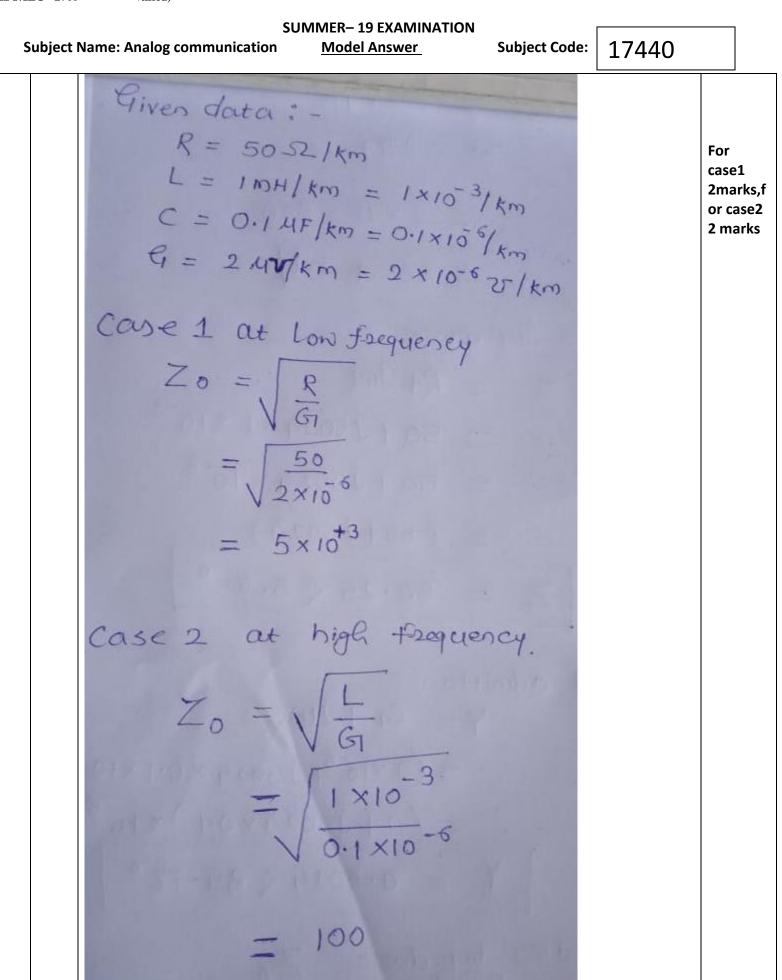
rtified)

Subject Name: Analog communication

MAHARASHT

(Autonomous) (ISO/IEC - 2700

> SUMMER- 19 EXAMINATION Model Answer


Subject Code:

17440

Ans:
Ans:
Assume
$$f = 800 \text{ Hz}$$

 $\omega = 2\pi f$
 $= 2 \times \pi \times 800$
 $= 5024 \text{ zd/sec.}$
Series: Infedance
 $Z = R + j\omega L$
 $= 50 + j5024 \times 1 \times 10^{-3}$
 $= 50 + j5024 \times 10^{-3}$
 $= (50 + j5024)$
 $Z = 50 \cdot 25 < 5 \cdot 73^{\circ}$
Shune admittance
 $Y = Gr + j\omega C$
 $= (2 \times 10^{-6} + j5024 \times 0.1 \times 10^{-6})$
 $= (2 \pm 15024 \times 0.1) \times 10^{-6}$
 $Y = 0.5524 < 89.77^{\circ}$
 $z_{0} = \sqrt{\frac{Z}{Y}} = \int \frac{50 \cdot 25 < 5.78^{\circ}}{0.5024 < 89.77^{\circ}}$
 $z_{0} = \sqrt{\frac{Z}{Y}} = \int \frac{50 \cdot 25 < 5.78^{\circ}}{0.5024 < 89.77^{\circ}}$
 $z_{0} = 10 < -84^{\circ}$

(Autonomous) (ISO/IEC - 2700 rtified)

MAHARASHT

Subject Name: Analog communication

Subject Code:

17440

Ans:	SINGLE STUB	DOUBLE STUB	Each
	1.single stub ,one short ckted stub at one fixed points.	In double stub ckted stub at two short fixed points.	poir mar
	2.Single stub is used as single frequency.	Double stub is used as different frequencies.	
	3.It is used as low frequency range.	.It is used as high frequency range.	
	Transmission Line 4. Single Stub Matching	Transmission Line	
f)	List the types of micro-strip antennas. Explai	n any one of them.	4M
Ans:	List the types of micro-strip antennas are as	fallows.	List
	1) RECTANGULER		mar
	2) CIRCULER.		Diag
	3) SQUARE.		Expla
	4) ELIPTICAL.		tion
	5) TRINGULAR.		1ma
	Rectangular Micro-strip Antenna:		
	Micro-strip Antennas are also called as patch on top of a grounded dielectric substrate .Th Rectangular and Circular are common.	antennas.it usually consist of a metal patch e patch may be in a variety of shapes, but	
	printed directly onto a circuit board. Micro-	ing increasingly useful because they can be strip antennas are becoming very widespread ennas are low cost, have a low profile and are	

C1

H

R.

AAA

C.;

Input

(Modulating signal)

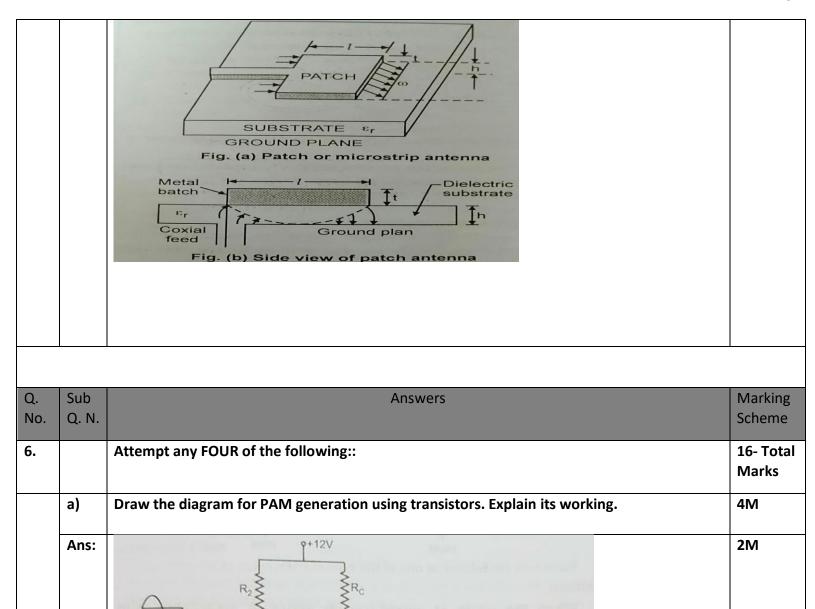
Sampling .

ППП

clock (carrier)

0

SUMMER- 19 EXAMINATION Model Answer


Subject Name: Analog communication

Subject Code:

17440

28

2M

= C_E

Output

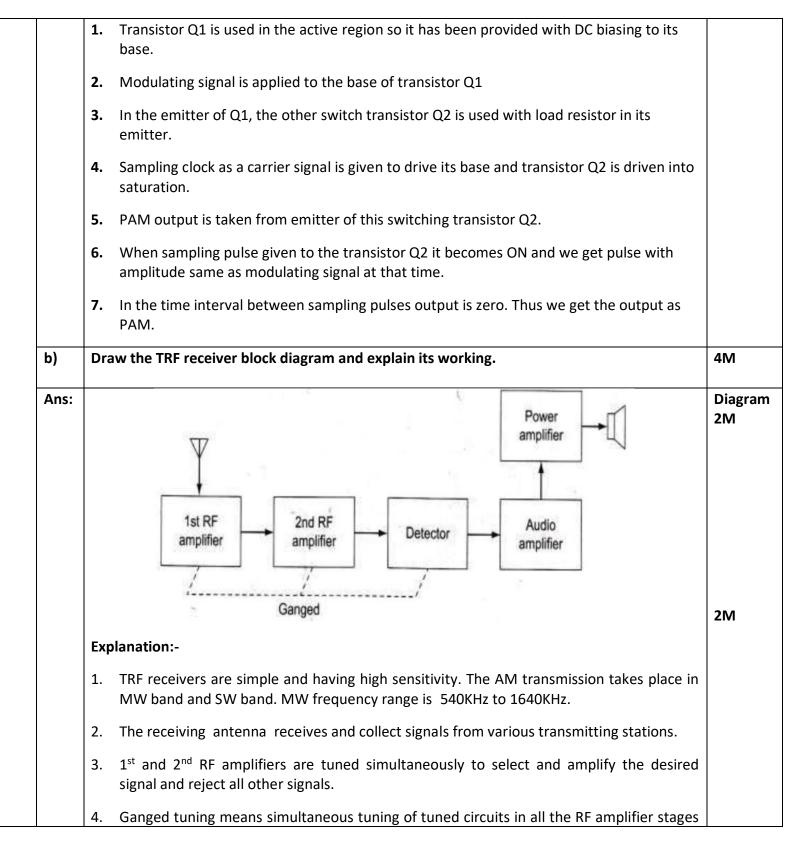
(PAM)

Q1

Q2

tified)

Subject Name: Analog communication


MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER- 19 EXAMINATION

Model Answer

Subject Code:

17440

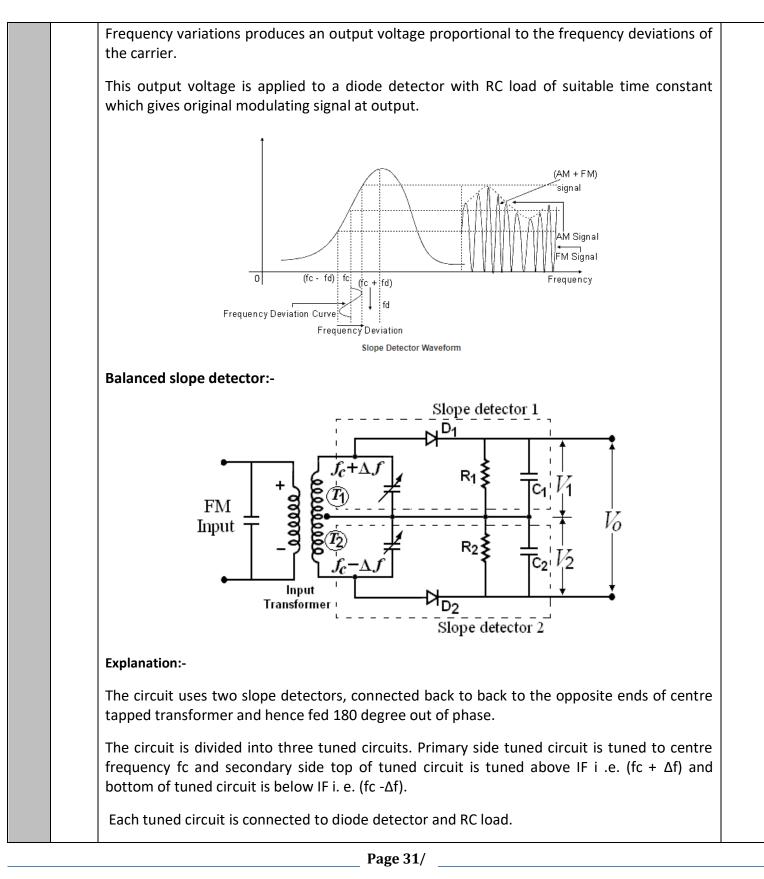
tified)

Subject Name: Analog communication

SUMMER-19 EXAMINATION

Model Answer

Subject Code:


17440

	using gang capacitor.		
	5. The detector is used to demodulate the amplified signal that means it converts modulated signal into original modulating signal.		
	6. The detected signal is amplified to a adequate power level to drive the loudspeaker.		
	7. The loudspeaker converts electrical signal into original sound information.		
c)	List the types of FM detector. Explain any one of them.	4M	
Ans:	Types of FM detector:-	Any two	
	1. Simple slope detector	types	
	2. Balanced slope detector	1M	
	3. Phase discriminator(Foster seely discriminator)		
	4. Ratio detector		
	5. PLL detector		
	(NOTE: Explanation of any one type is to be considered for awarding the Mark to student)		
	Simple slope detector:-	ion(1M)	
	$FM in \neq FM in \neq R = C Modulating Signal$	Graphical represent ation is optional	
	Explanation:-		
	Consider a frequency modulated signal fed to a tuned circuit at primary and is tuned to frequency fc.		
	The resonant frequency of secondary side tuned circuit is adjusted to (fc + Δ f).		
	The output pf this tuned circuit will have an amplitude that depends on the frequency deviation of the input signal.		
	The circuit is detuned by an amount of Δf , to bring the carrier centre frequency to required point on the selectivity curve.		
		L	

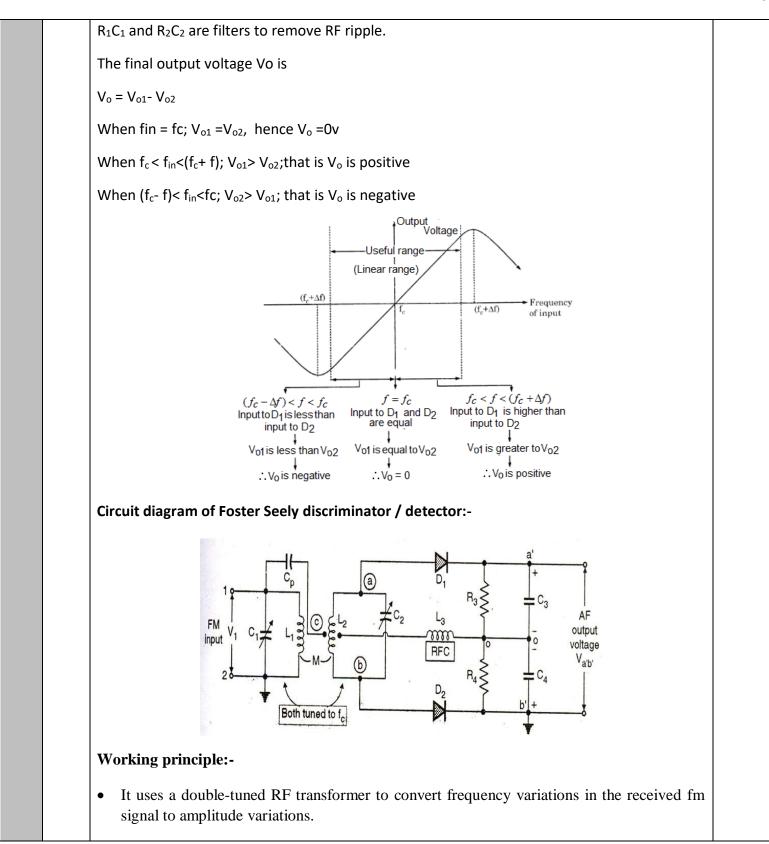
Subject Name: Analog communication

Subject Code:

17440

tified)

Subject Name: Analog communication


MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER- 19 EXAMINATION

Model Answer

Subject Code:

17440

Subject Name: Analog communication

Subject Code:

17440

- 33
- These amplitude variations are then rectified and filtered to provide a dc output voltage. This voltage varies in both amplitude and polarity as the input signal varies in frequency.
- The output voltage is 0 when the input frequency is equal to the carrier frequency (F_R) .
- When the input frequency rises above the center frequency, the output increases in the positive direction. When the input frequency drops below the center frequency, the output increases in the negative direction.
- The output of the Foster-Seely discriminator is affected not only by the input frequency, but also to a certain extent by the input amplitude. Therefore, using limiter stages before the detector is necessary.
- Figure shows a typical Foster-Seely discriminator. The primary tank circuit consists of C₁ and L₁. C₂ and L₂ form the secondary tank circuit. Both tank circuits are tuned to the center frequency of the incoming fm signal.
- Choke L₃ is the dc return path for diode rectifiers D₁ and D₂. Resistors R₃ and R₄ are the load resistors and are bypassed by C₃ and C₄ to remove radio frequency.

Circuit diagram of Ratio detector:-

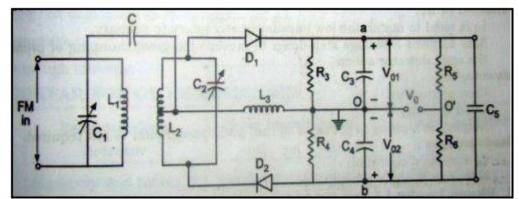


Fig. Ratio detector

Explanation:- •

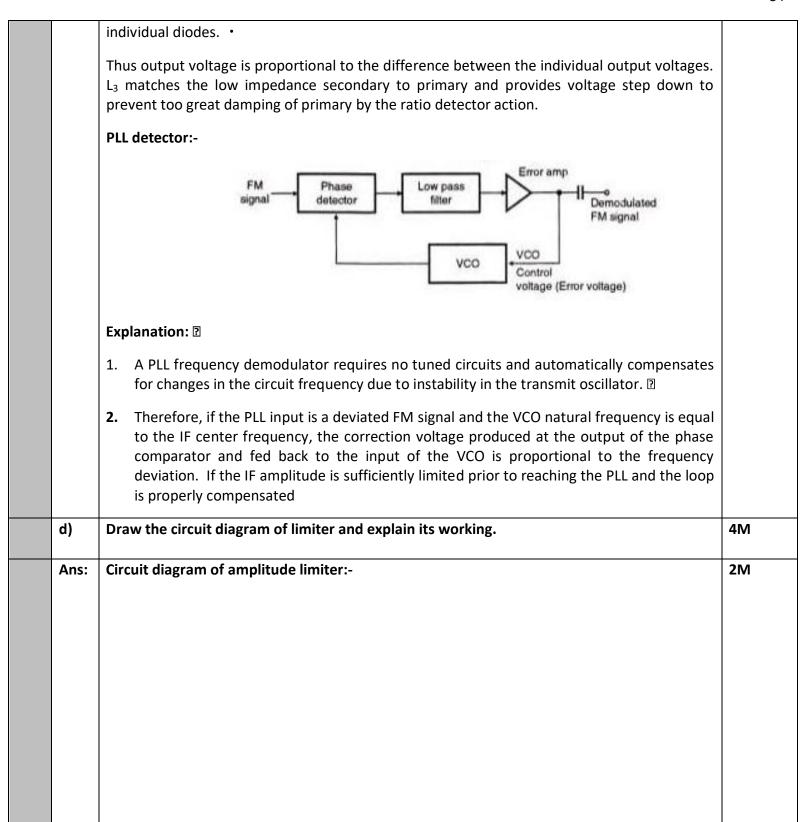
With diode D_2 reversed biased, point O is now positive with respect to b, so that V_{ab} is now sum voltage.

Large capacitor C_5 is connected to keep the o/p sum voltage constant, even though the load current increases. Thus provides the amplitude limiting. •

Output voltage V_o is equal to half of the difference between the output voltages from the

rtified)

Subject Name: Analog communication

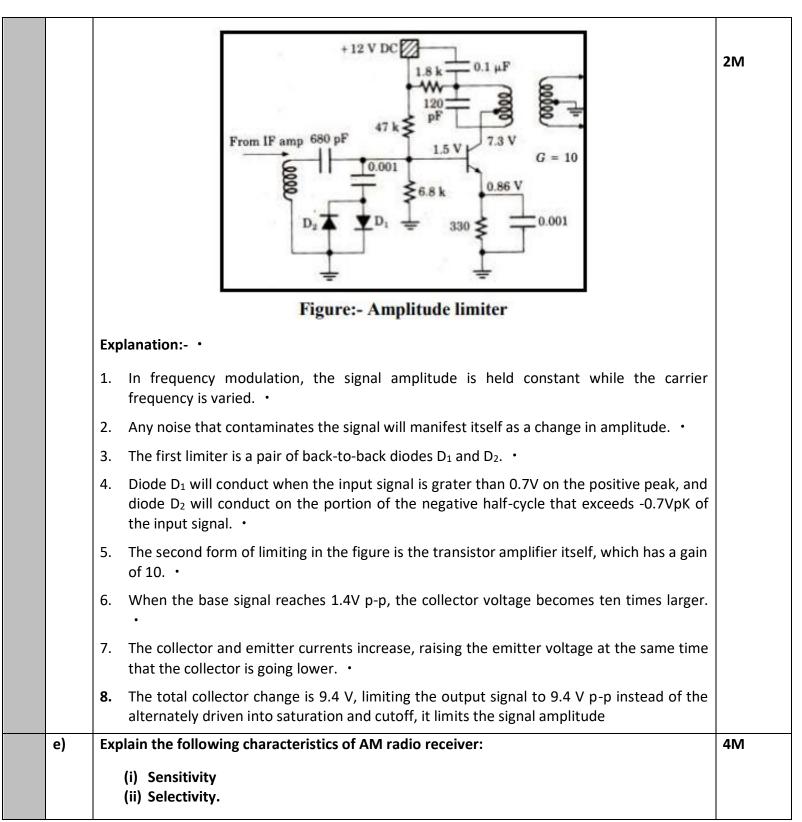

MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

17440


SUMMER-19 EXAMINATION

Subject Name: Analog communication

Model Answer

Subject Code:

17440

rtified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

> SUMMER- 19 EXAMINATION Model Answer

Subject Name: Analog communication

Subject Code:

17440

rtified)

Subject Name: Analog communication

MAHARASHT

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

17440

	(ii) Antenna gain (iii) Antenna resistance (iv) Directivity	
Ans	i) Polarization:-	1M each
	It is defined as the direction of electric field vector in the EM wave radiated by the transmitting antenna.	
	ii) Antenna Gain:-	
	Antenna gain is defined as the ratio of the power density radiated in a particular direction to the power density radiated to the same point by the reference antenna.	
	It is mathematically given by,	
	$Anteena \ Gain = \frac{P}{P_{ref}}$	
	Where	
	P = power density at some point with the given antenna	
	P _{ref} = power density at same point with the reference antenna	
	iii)Antenna Resistance:- Radiation resistance is the AC antenna resistance and is equal to the ratio of the power radiated by the antenna to the square of the current at its feed point. It is given by,	
	$R_r = \frac{P_{rad}}{i^2}$	
	Iv) Directivity :-	
	It is the maximum directive gain which is obtained in only one direction in which the radiation is maximum.	
	That is directivity = Max. directive gain	