MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation

Subject code

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
Page 2 of 27

Q No.		Answer	Marking scheme
1 A		Attempt any SIX of the following	12
1A	a	Viscosity: It is the property of the fluid by virtue of which it offers resistance to the movement of one layer of fluid over an adjacent layer. SI Unit is Pa.S	1 1
1A	b	Eg of incompressible fluid (any one) Water, sodium chloride solution, sugar solution Eg of compressible fluid (any one) Oxygen, nitrogen, carbon dioxide (any gas)	1 1
1A	c	Significance of Reynold's Number It is a dimension less number which indicates the nature of flow. If $\quad \mathrm{N}_{\mathrm{Re}}<2100$ flow is laminar $\mathrm{N}_{\mathrm{Re}}>4000$ flow is turbulent $2100<\mathrm{N}_{\mathrm{Re}}<4000-$ flow is transition It is the ratio of inertial force to viscous force.	2
1A	d	Suitable pipe fitting (i) Termination of pipe: Plug (ii) Frequent removal of section pipe in a pipe line: Union	
1A	e	Hydraulically smooth pipe: When a rough pipe is smoothed, the friction factor reduces and a stage will be reached when further smoothening of the pipe will not reduce the friction factor for a given Reynolds's number. The pipe is then said to be hydraulically smooth. In other words when roughness is zero or negligible, the pipe is known as hydraulically smooth pipe.	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
17426
Page 3 of 27

\begin{tabular}{|c|c|c|c|}
\hline 1A \& f \& \begin{tabular}{l}
Air binding: \\
The pressure developed by the pump impeller is proportional to the density of fluid in the impeller. If air enters the impeller, the pressure developed is reduced by a factor equal to the ratio of the density of air to the density of liquid. Hence, for all practical purposes the pump is not capable to force the liquid through the delivery pipe. This is called Air binding \\
To avoid air binding, the centrifugal pump needs priming.
\end{tabular} \& 1

1

\hline 1A \& g \& | Pressure developed by |
| :--- |
| (i) Fan: $<30 \mathrm{KPa}$ |
| (ii) Centrifugal blower : Centrifugal blower with multistage construction 275 to 700 Kpa | \& 1

1

\hline 1 \& \& Attempt any TWO of the following \& 08

\hline 1B \& i \& | Derivation of equation of continuity: |
| :--- |
| Mass balance states that for a steady state flow system, the rate of mass entering the flow system is equal to that leaving the system provided accumulation is either constant or nil. |
| Let $\mathrm{v}_{1}, \rho_{1} \& A_{1}$ be the avg. velocity, density\& area at entrance of tube \& v_{2}, $\rho_{2} \& A_{2}$ be the corresponding quantities at the exit of tube. |
| Let \dot{m} be the mass flow rate |
| Rate of mass entering the flow system $=v_{1} \rho_{1} A_{1}$ |
| Rate of mass leaving the flow system $=v_{2} \rho_{2} A_{2}$ | \& 2

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code \square
17426
Page 4 of 27

\begin{tabular}{|c|c|c|c|}
\hline \& \& Under steady flow conditions
\[
\begin{aligned}
\& \dot{m}=\rho_{1} \mathrm{v}_{1} \mathrm{~A}_{1}=\rho_{2} \mathrm{v}_{2} \mathrm{~A}_{2} \\
\& \dot{m}=\rho v \mathrm{~A}=\text { constant } \quad \ldots \quad \text { Equation of continuity }
\end{aligned}
\] \& 2 \\
\hline 1B \& ii \& \begin{tabular}{l}
Globe valve \\
Diagram
\end{tabular} \& 2 marks for diagram and 2 marks for labeling. \\
\hline 1B \& iii \& \begin{tabular}{l}
Cavitation: The vapour pressure of the liquid at the pumping temperature sets the lower limit for the suction pressure. If the pressure in the suction line is less than the vapour pressure of the liquid at the pumping temperature, some of the liquid flashes into vapour or if the liquid contain gases, they may come out of the solution resulting into gas pockets. This phenomenon is known as cavitation. \\
To avoid cavitation, the pressure at the pump inlet must exceed the vapour pressure of the liquid by a certain value called the Net Positive Suction Head. NPSH is the amount by which the pressure at the suction point of the pump (sum of velocity and pressure heads) is in excess of vapour pressure of the liquid.
\end{tabular} \& 2

2

\hline
\end{tabular}

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
17426
Page 5 of 27

2		Attempt any FOUR of the following	16
2	a	Derivation for calculation of pressure drop using a \mathbf{U} tube manometer Pressure at the point $1=\mathrm{P}_{1}$ Pressure at the point $2=\mathrm{P}_{1}+(\mathrm{x}+\mathrm{h}) \rho \mathrm{g}$ Pressure at the point $3=$ Pressure at the point 2 (2,3 on same plane) Pressure at the point $4=$ Pressure at the point $3-\mathrm{h} \rho_{\mathrm{m}} \mathrm{g}$ $=\mathrm{P}_{1}+(\mathrm{x}+\mathrm{h}) \rho \mathrm{g}-\mathrm{h} \rho_{\mathrm{m}} \mathrm{~g}$ Pressure at the point $5 \quad \mathrm{P}_{2}=$ Pressure at the point $4-\mathrm{x} \rho \mathrm{g}$ $\begin{gathered} P_{2}=P_{1}+(x+h) \rho g-h \rho_{m} g-x \rho g \\ =P_{1}+h g\left(\rho-\rho_{m}\right) \\ \left(P_{1}-P_{2}\right)=\Delta P=h\left(\rho_{m} \cdot \rho\right) g \\ \Delta P=h\left(\rho_{m} \cdot \rho\right) g \end{gathered}$	1

Subject title: Fluid Flow Operation
Subject code
17426
Page 6 of 27

2	b	Data: $\begin{aligned} & \mathrm{D}=4 \mathrm{~cm} \quad \mathrm{r}_{\mathrm{w}}=2 \mathrm{~cm} \\ & \mathrm{Umax}=4 \mathrm{~cm} / \mathrm{s} \\ & \mathrm{r}=1 \mathrm{~cm} \\ & \mathrm{U}=\operatorname{Umax}\left(1-\left(\left(\frac{r}{r_{w}}\right)^{2}\right)\right) \\ & =4\left(1-\left(\left(\frac{1}{2}\right)^{2}\right)\right)=\mathbf{3} \mathbf{~ c m} / \mathrm{s} \end{aligned}$	2 2
2	c	Characteristic curves of a centrifugal pump : Duty point: A is the duty point. The duty point is the point where the H-Q curve cuts the ordinate through the point of maximum efficiency, shows the optimum operating conditions. Importance of characteristics curve: Characteristics curve shows the relationship between discharge and the	1.5

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code

	various parameters like head, power and efficiency. From the H-Q curve, it is clear that head increases continuously as the capacity is decreased. The head corresponding to zero or no discharge is known as the shut off head of the pump. From H-Q curve, it is possible to determine whether the pump will handle the necessary quantity of liquid against a desired head or not and the effect of increase or decrease of head. The η-Q curve shows the relationship between pump efficiency and capacity. It is clear from η-Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The P_{B} - Q curve gives us an idea regarding the size of motor required to operate the pump at the required conditions and whether or not motor will be overloaded under any other operating conditions.	
2	difference between safety valve and rupture disc: A safety valve is designed to open and release excess pressure. It closes again when overpressure ceases. The ultimate safety device used in pressure vessel to avoid accident is rupture disc. Rupture disc, is a non-reclosing pressure-relief device. A rupture disc is a one-time-use membrane. They can be used as single protection devices or as a backup device for a conventional safety valve, if the pressure increases and the safety valve fails to operate (or can't relieve enough pressure fast enough) the rupture disc will burst. Rupture discs are very often used in combination with safety relief valves, isolating the valves from the process, thereby saving on valve maintenance and creating a leak-tight pressure relief solution.	1.5

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code $\quad 17426$

Page 8 of 27

		Diagram of Rupture disc:	2
2	e	For laminar flow, $\mathrm{f}=\frac{16}{N R e}$ (Proof) Fanning's friction f is defined as the ratio of shear stress at the wall ($\tau \mathrm{w})$ to the product of velocity energy and density (ρ) ie $\mathrm{f}=\frac{\tau_{w}}{\frac{\rho V^{2}}{2}}$ But average velocity $\mathrm{v}=\frac{\tau_{w} r_{w}}{4 \mu}$ where r_{w} is the radius at the wall and μ is the viscosity of the fluid So $\tau_{\mathrm{w}}=\frac{4 \mu V}{r_{w}}$ Substituting the value of τ_{w} from equation 2 in equation 1 $\begin{aligned} \mathrm{f} & =\frac{8 \mu V}{\rho r_{w} V^{2}} \\ & =\frac{16 \mu}{\rho D V} \text { where D is the diameter } \\ & =\frac{16}{\frac{\rho D V}{\mu}}=\frac{16}{N R e} . \text { Hence the proof. } \end{aligned}$	2
2	f	Calibration of Rota meter: 1) For calibration, allow the liquid to flow through the Rota meter.	4

Subject title: Fluid Flow Operation
Subject code
Page 9 of 27

		2) Adjust the float to the lowest position by slightly opening the valve and note down the position of float. 3) Note down the time taken for collecting a known volume of water and calculate the volumetric flow rate. $\text { Volumetric flow rate }=\frac{\text { volume of liquid collected }}{\text { time }}$ 4) Repeat the steps 2 and 3 by increasing the flow rate. 5) Plot a graph of Q Vs float position which is known as calibration curve. Calibration chart for rotameter	
3		Attempt any FOUR of the following	16
3	a	Data: Specific gravity of oil $=0.8$	1 mark for data and appropriate conversion 1 mark for formula, 2 marks for calculation and final

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
17426
Page 10 of 27

		Level of water in tank $=\mathrm{h}_{\mathrm{w}}=1.5 \mathrm{~m}$ Level of oil in tank $=h_{0}=0.8 \mathrm{~m}$ By definition, $\rho_{\mathrm{w}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Specific gravity $=\frac{\text { density of oil }}{\text { density of water }}$ $0.8=\frac{\rho o}{\rho w}$ $\rho_{\mathrm{o}}=0.8 * \rho_{\mathrm{w}}$ $\rho_{\mathrm{w}}=0.8 * 1000=800 \mathrm{~kg} / \mathrm{m}^{3}$ by definition of hydrostatic equilibrium, pressure exerted by liquid column of height h can be calculated as : $\mathrm{P}=\mathrm{h} \rho \mathrm{~g}$ For given situation $\begin{aligned} & \left(\begin{array}{c} \text { Pressure exerted } \\ \text { at } \\ \text { bottom of tank } \end{array}\right)=\left(\begin{array}{c} \text { Pressure exerted } \\ \text { by } \\ \text { oil column } \end{array}\right)+\binom{\text { Pressure exerted by }}{\text { water column }} \\ & \mathrm{P}=\mathrm{h}_{\mathrm{w}} \rho \mathrm{~g}+\mathrm{h}_{\mathrm{o}} \rho \mathrm{~g} \\ & \mathrm{P}=(1.5 * 1000 * 9.81)+(2 * 800 * 9.81) \\ & \mathrm{P}=30411 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \end{aligned}$ Gauge pressure exerted at the bottom of $\operatorname{tank}=\mathbf{3 0 4 1 1} \frac{\mathrm{N}}{\mathbf{m}}$	answer
3	b	Classification of valve The valves are classified on different basis and criteria as follows. a. On-Off valve e.g. Ball valve, Gate valve, Plug valve b. Unidirectional valve e.g. Non return valve c. Flow regulating valve e.g. Globe valve, Diaphram valve,Needle valve, control valve etc.	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
SUMMER-19 EXAMINATION
Model Answer

Subject title: Fluid Flow Operation	Subject code

| | d. Special purpose valve e.g. Safety valve, Pressure regulating valve, etc.
 Valve used for
 (i) Accurate control of extremely smaller flow rate
 Needle valve
 (ii) Flow regulation of corrosive fluids:
 Diaphragm valve | |
| :--- | :--- | :--- | :--- | :--- |
| 3 | Diagram of Double acting reciprocating pump: | 1 |

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code $\quad 17426$

Page 12 of 27

3	d	Reason for providing interstage cooling in multistage reciprocating compressor As per the ideal gas equation ,the relation between pressure, volume,number of moles and absolute temperature can be written as, $\mathrm{PV}=\mathrm{nRT}$ For compression process we can write $\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right) \cdot\left(\frac{V_{2}}{V_{1}}\right)$ During compression, $\mathrm{P}_{2}>\mathrm{P}_{1}$ Also $\mathrm{V}_{2}<\mathrm{V}_{1}$ However the net change is so that $\frac{T 2}{T 1}>1$ We know that when temperature increases expanding tendency also increases as a result power required for compression also increases which increase cost of compression. When interstage cooling is applied an attempt is made so as to approach nearly isothermal conditions.Due to this power required for compression decreases and as the temperature is reduced o-rings and other accessories do not get damaged .Due to this interstage cooling is provided to	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code \square
17426
Page 13 of 27

\begin{tabular}{|c|c|c|c|}
\hline \& \& multistage compressor. \& \\
\hline 3 \& e \& \begin{tabular}{l}
Newton's law of viscosity \\
Newton law of viscosity states that shear stress is proportional to shear rate or velocity gradient. \\
Mathematical expression:
\[
\begin{gathered}
\tau \propto \frac{d u}{d y} \\
\tau=\mu \frac{d u}{d y}
\end{gathered}
\] \\
\(\mathrm{T}=\) shear stress acting on fluid \(\left(\mathrm{N} / \mathrm{m}^{2}\right)\) \\
du/dy=shear rate \(\left(\mathrm{m}^{-1}\right)\) \\
\(\mu=\) constant of proportionality mentioned as coefficient of viscosity.
\end{tabular} \& \begin{tabular}{l}
Statement : \\
1 mark \\
Mathematic \\
al \\
expression : \\
2 mark \\
Units and \\
meaning : 1 \\
mark
\end{tabular} \\
\hline 3 \& f \& \begin{tabular}{l}
Data: \\
Vapour pressure of the liquid \(\left(\mathrm{P}_{\mathrm{v}}\right)=40 \mathrm{kN} / \mathrm{m}^{2}=40 * 10^{3} \mathrm{~N} / \mathrm{m}^{2}\). \\
Atmospheric pressure \(\left(\mathrm{P}_{\mathrm{A}}\right)=101325 \mathrm{~N} / \mathrm{m}^{2}\). \\
Distance between suction line and level of liquid in the reservoir \(=1.5 \mathrm{~m}\) \\
Density of the liquid \((\rho)=840 \mathrm{~kg} / \mathrm{m}^{3}\)
\[
\begin{aligned}
\& \mathrm{h}_{\mathrm{fs}}=3.5 \mathrm{~J} / \mathrm{kg} \\
\& \mathrm{~h}_{\mathrm{fs}}^{1}=3.5 \mathrm{~J} / \mathrm{kg}=3.5 / 9.8==0.3567 \mathrm{~m}
\end{aligned}
\]
\[
\begin{aligned}
\text { NPSH } \& =\frac{P_{a}-P_{V}}{\rho g}-\mathrm{Z}_{\mathrm{a}}-\mathrm{h}_{\mathrm{fs}}^{1} \\
\& =\frac{101325-40000}{840 * 9.81}-1.5-0.3567=20.46 \mathrm{~J} / \mathrm{Kg}=\mathbf{5 . 5 8 5 2} \mathbf{m}
\end{aligned}
\]
\end{tabular} \& 1

2
1

\hline 4 a \& \& Attempt any FOUR of the following \& 16

\hline 4 \& a \& Difference between Pipes and Tubes \& 1 mark each

\hline
\end{tabular}

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code $\quad 17426$
Page 14 of 27

		Criteria	Tube	Pipe	
		(i) Length	Tubes are flexible and available up to several hundread meters length.	Pipes are usually rigid, straight and generally available up to length 6 m .	
		(ii) Method of expressing thickness	Tube thickness is generally expressed in Birmigham Wire Guage(BWG). BWG 7 represents heavy walled tube and 24 represents thin pipe.	Pipe thickness is function of internal pressure and allowable stress of material. It is generally expressed in scheduled number.	
		(iii) MOC	Tubes are generally made up of metal and alloys like copper, stainless steel, monel, etc.	Pipes are made of metal as well as non metal like cast iron, steel, PVC, etc.	
		(iv) Method of Fitting	Fitted by flaring and brazing	Fitted by weding, flanged joints and pipe fittings.	
4	b	Reynolds experiment Scientist Osborne fundamental experime	old"s observed the s to understand the in	of fluid . He did uence of various para	Description- 3 marks, Diagram :

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code

17426
Page 15 of 27

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
SUMMER-19 EXAMINATION
Model Answer

Subject title: Fluid Flow Operation
Subject code
Page 16 of 27
4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code \square
17426
Page 17 of 27

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code

17426
Page 18 of 27

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code \square
17426
Page 19 of 27

5		Attempt any TWO of the following	16
5	a	Data: $\mathrm{D}=75 \mathrm{~mm}=0.075 \mathrm{~m}$ Density $\rho=1.1 \mathrm{~g} / \mathrm{cm}^{3}=1.1 * 1000 \mathrm{~kg} / \mathrm{m}^{3}$ Viscosity $\mu=1.5$ poise $=0.15 \mathrm{~N}-\mathrm{S} / \mathrm{m}^{2}$ Volumetric flow rate $\mathrm{Q}=31 /$ minute $=3 * 10^{-3} / 60=5 * 10^{-5} \mathrm{~m}^{3} / \mathrm{S}$ Area $\mathrm{A}=\frac{\pi D^{2}}{4}=\frac{3.14 * 0.075^{2}}{4}=\mathbf{4 . 4 1} * \mathbf{1 0}^{-3} \mathbf{m}^{\mathbf{2}}$ $\mathrm{L}=50 \mathrm{~m}$ Velocity $\mathrm{V}=\frac{Q}{A}=5 * 10^{-5} / 4.41 * 10^{-3}=\mathbf{0 . 0 1 1 3 4} \mathbf{~ m} / \mathbf{s}$ $\operatorname{NRe}=\frac{D V \rho}{\mu}=0.075 * 0.01134 * 1.1 * 1000 / 0.15=6.237$ Since $\mathrm{NRe}<2100$, flow is laminar $\begin{aligned} & \mathrm{f}=16 / \mathrm{NRe}=16 / 6.237=\mathbf{2 . 5 6 5} \\ & \mathrm{h}_{\mathrm{fs}}=4 \mathrm{flV}^{2} / 2 \mathrm{D}=4 * 2.565 * 50 * 0.01134^{2} /(2 * 0.075)=\mathbf{0 . 4 3 9} \mathbf{~ J} / \mathbf{k g} \\ & \Delta \mathrm{P}=\mathrm{hfs} * \rho=0.439 * 1.1 * 1000=\mathbf{4 8 3 . 7 8} \mathbf{~ P a} \end{aligned}$	1 1 1 1 1 3 1
5	b	Hydrostatic equilibrium: A fluid is said to be in hydrostatic equilibrium or hydrostatic balance when it is at rest, or when the flow velocity at each point is constant over time. This occurs when external forces such as gravity are balanced by a pressure gradient force. Expression to calculate pressure Consider a vertical column of liquid of height h1cm. Let us consider a small element of fluid of height dh cm , which is at a height hemfrom the bottom of the column. A is the cross sectional area of the column in m^{2}. $\mathrm{\rho}$ is the density of the liquid in $\mathrm{g} / \mathrm{cm}^{3}$.	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Subject title: Fluid Flow Operation
Subject code
Page 20 of 27

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code
17426
Page 21 of 27

		P_{1} is the pressure at the base of the column where $\mathrm{h}=0$ $\begin{aligned} & P_{2}-P_{1}+\rho g h=0 \\ & P_{1}-P_{2}=\rho g h \\ & \Delta \mathbf{P}=\boldsymbol{\rho g} \mathbf{h} \end{aligned}$	3
5	c	Data:	
		Mass flow rate $(\dot{m})=90 \mathrm{~kg} /$ minute $=90 / 60=1.5 \mathrm{~kg} / \mathrm{s}$ Diameter of pipe $=\mathrm{D}=50 \mathrm{~mm}=0.05 \mathrm{~m}$ Diameter of throat $=D_{0}=25 \mathrm{~mm}=0.025 \mathrm{~m}$ Density of water $=\rho_{\text {Н } 2 \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Density of mercury $=\rho_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$ Coefficient of venturimeter $=C_{0}=0.62$ $\mathrm{Q}=\dot{m} / \rho=1.5 / 1000=1.5 * 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$ The flow equation of orifice meter is $Q=\frac{C_{o} A_{o} \sqrt{2 * g * \Delta H}}{\sqrt{1-\beta^{4}}}$ Area of orifice $=A_{o}=\pi / 4 * D_{o}^{2}=\pi / 4 *(0.025)^{2}=\mathbf{0 . 0 0 0 4 9} \mathbf{~ m}^{2}$ $\begin{aligned} & \beta=\frac{\mathrm{DT}}{D}=0.025 / 0.05=0.5 \\ & 1.5 * 10-3=\frac{0.62 * 0.00049 \sqrt{2 * 9.81 * \Delta H}}{\sqrt{1-0.5^{4}}} \end{aligned}$ $\Delta H=$ Difference in levels in terms of water $=1.16 \mathrm{~m}$ of water $\Delta H=\Delta h \frac{\left(\rho_{\mathrm{Hg}}-\rho_{\mathrm{H} 2 \mathrm{O}}\right)}{\rho_{\mathrm{H} 2 \mathrm{O}}}$ where $\Delta \mathrm{h}=$ Difference in levels in mercury manometer $1.16=\Delta h \frac{(13600-1000)}{1000}$	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation	Subject code	17426

Page 22 of 27

\begin{tabular}{|c|c|c|c|}
\hline \& \& \[
\begin{gathered}
1.16 \quad=1.26 \Delta h \\
\Delta h=0.092 \mathrm{~m} \text { of } \mathrm{Hg}=\mathbf{9 2} \mathbf{~ m m} \text { of } \mathbf{H g} .
\end{gathered}
\] \& 2 \\
\hline \multicolumn{2}{|l|}{6} \& Attempt any TWO of the following \& 16 \\
\hline 6 \& a \& \begin{tabular}{l}
Bernoulli's theorem: \\
Assumptions made: \\
1. Velocity is constant over the entire cross sectional area. \\
2. No pump work. \\
3. Frictional losses are negligible. \\
For steady, irrotational flow of an incompressible fluid, the sum of pressure energy, kinetic energy \& potential energy at any point is constant. \\
Let us consider an element of length \(\Delta \mathrm{L}\) of a stream tube of constant cross sectional area as shown above. \\
Let us assume that cross-sectional area of element be A \& the density of the fluid be \(\rho\). Let \(u \& P\) be the velocity \& pressure at the entrance \& \((u+\Delta u)\), \((\mathrm{P}+\Delta \mathrm{P})\) are the corresponding quantities at the exit. \\
The forces acting on the element are \\
1) The force from upstream pressure \(=\) P.A (acting in the direction of flow)
\end{tabular} \& 2

1

\hline
\end{tabular}

Subject title: Fluid Flow Operation
Subject code

17426
Page 23 of 27

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code

17426
Page 24 of 27

| | $\frac{1}{\rho} \frac{d P}{d L}+g \frac{d Z}{d L}+\frac{d\left(\frac{u^{2}}{2}\right)}{d L}$
 Which can be written as
 $\frac{d P}{\rho}+g \cdot d Z+d\left(\frac{u^{2}}{2}\right)=0$
 Eq.III is called as Bernoulli Equation. It is differential form of the Bernoulli

 hence,the integrated form of eq.III is
 P | |
| :--- | :--- | :--- | :--- |
| 6 | Hence proved that low of conservation of energy is applicable for flowing
 fluid. The Bernoulli Equation relates the pressure at a point in the fluid to its
 position \& velocity. | |
| bCentrifugal pump:
 Principle:
 By centrifugal action, the liquid is lifted from a lower level to higher level. The
 impeller blades in revolving produce a reduction in pressure at eye of impeller,
 therefore liquid flows into the impeller from the suction pipe. The liquid is thrown
 outward by centrifugal action along the blades. As a result of high speed of rotation,
 the liquid acquires a high kinetic energy. The acquired kinetic energy is converted
 into pressure energy when it leaves the blade tips and the liquid passes into the volute
 chamber and finally is discharged through the outlet at high pressure.
 Construction:
 The parts of a centrifugal pump are
 (i) Impeller: It is the heart of a centrifugal pump. It is mounted on a shaft. The
 function of impeller is to force the liquid in to a rotary motion so that the | | |

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation \quad Subject code $\quad 17426$

Page 25 of 27

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation
Subject code

17426
Page 26 of 27

		Working: First priming of pump is done. Then delivery valve is kept closed and power from electric motor is applied to shaft. The delivery valve is kept closed in order to reduce the starting torque for the motor. Impeller rotating in the casing produces a forced vortex which imparts a centrifugal head to the liquid and pressure is increased throughout the liquid. As long as delivery valve is closed and impeller is rotated, there will be just churning of the liquid within the casing. When delivery valve is opened, liquid is flown in outward radial direction, leaving the vanes of impeller at outer circumference with high velocity and pressure. Vacuum is created at the eye of impeller, therefore liquid from sump flows through suction pipe to eye of impeller thereby replacing the liquid which is being discharged from the entire circumference of the impeller. The high pressure is utilized in lifting of the liquid to required height through delivery pipe.	2
6	c	Application of (i) Centrifugal compressor 1) Oil refineries 2) To provide oil free compressed air in food processing 3) Refrigeration and air conditioning 4) Gas turbines (ii) Centrifugal blower 1)Sewage aeration 2) Furnaces like Blast, Cupola etc. 3)Municipal gas plant 4) Hot air blowers (iii) Reciprocating compressor	1.5 marks for any two application 1.5 marks for any two application

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer
Subject title: Fluid Flow Operation \quad Subject code $\quad 17426$

Page 27 of 27

	1)Refrigeration plants 2) Gas pipelines 3)Compressed air for automobiles 4)Manufacturing of LDPE(Low Density Polyethelene)	1.5 marks for any two (iv) Fan 1)To remove flue gases from boiler to the atmosphere 2)To draw air through the cooling tower Justification for size of impeller required in the case of centrifugal blower is large: Centrifugal Blowers require large diameter impellers and high speed of operations since very high heads in terms of low density fluid (eg. gas or vapour)are needed for generating moderate pressure ratios.

