MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Fluid Flow Operation

Subject code

17426

Page **1** of **27**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **2** of **27**

Q No.		Answer	Marking
			scheme
1	A	Attempt any SIX of the following	12
1A	a	Viscosity: It is the property of the fluid by virtue of which it offers resistance	1
		to the movement of one layer of fluid over an adjacent layer.	
		SI Unit is Pa.S	1
1A	b	Eg of incompressible fluid (any one)	1
		Water, sodium chloride solution, sugar solution	
		Eg of compressible fluid (any one)	1
		Oxygen, nitrogen, carbon dioxide (any gas)	
1A	c	Significance of Reynold's Number	2
		It is a dimension less number which indicates the nature of flow.	
		If $N_{Re} < 2100$ flow is laminar	
		$N_{Re} > 4000$ flow is turbulent	
		$2100 < N_{Re} < 4000 - $ flow is transition	
		It is the ratio of inertial force to viscous force.	
1A	d	Suitable pipe fitting	
		(i) Termination of pipe: Plug	1
		(ii) Frequent removal of section pipe in a pipe line: Union	1
1A	e	Hydraulically smooth pipe: When a rough pipe is smoothed, the friction	2
		factor reduces and a stage will be reached when further smoothening of the	
		pipe will not reduce the friction factor for a given Reynolds's number. The	
		pipe is then said to be hydraulically smooth. In other words when roughness is	
		zero or negligible, the pipe is known as hydraulically smooth pipe.	

t title	: Flı	aid Flow Operation Subject code	17426	5	
				Page 3 of	f 27
1A	f	Air binding:			
		The pressure developed by the pump impeller is proportional to the der	nsity of	1	
		fluid in the impeller. If air enters the impeller, the pressure develo	oped is		
		reduced by a factor equal to the ratio of the density of air to the der	nsity of		
		liquid. Hence, for all practical purposes the pump is not capable to for	orce the		
		liquid through the delivery pipe. This is called Air binding			
To avoid air binding, the centrifugal pump needs priming.		1			
1A g Pressure developed by					
		(i) Fan: <30KPa		1	
		(ii) Centrifugal blower : Centrifugal blower with multistage const	ruction		
275 to 700 Kpa 1b Attempt any TWO of the following		1			
		08			
1B i Derivation of equation of continuity:					
		Mass balance states that for a steady state flow system, the rate of mass			
		entering the flow system is equal to that leaving the system provided			
		accumulation is either constant or nil.			
		$A_1 \qquad \qquad$			
	Let v_1 , ρ_1 & A_1 be the avg. velocity, density & area at entrance of tube & v_2 ,		v ₂ ,	2	
		ρ_2 & A ₂ be the corresponding quantities at the exit of tube.			
		Let \dot{m} be the mass flow rate			
		Rate of mass entering the flow system = $v_1 \rho_1 A_1$			
		Rate of mass leaving the flow system = $v_2 \rho_2 A_2$			

ect title: Fluid Flow Operation		id Flow Operation Subject code	17426	6	
				Page 4 of	f 27
		Under steady flow conditions $\dot{m} = \rho_1 v_1 A_1 = \rho_2 v_2 A_2$			
		$\dot{m} = \rho v A = constant$ Equation of continuity		2	
1B	ii	Globe valve		2 marks	for
		Diagram		diagram a	and
		(Nearly closed position) Valve plug or valve Unive Plug Valve plug		2 marks	for g.
1 B	iii	Cavitation: The vapour pressure of the liquid at the pumping temperatu	ire sets		
		the lower limit for the suction pressure. If the pressure in the suction	line is	2	
		less than the vapour pressure of the liquid at the pumping temperature	, some		
		of the liquid flashes into vapour or if the liquid contain gases, they may	y come		
		out of the solution resulting into gas pockets. This phenomenon is know	own as		
		cavitation.			
		To avoid cavitation, the pressure at the pump inlet must exceed the vap	our		
		pressure of the liquid by a certain value called the Net Positive Suction I	Head.	2	
		NPSH is the amount by which the pressure at the suction point of the pu	mp		
		(sum of velocity and pressure heads) is in excess of vapour pressure of	the		
		liquid.			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page 5 of 27

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page 6 of 27

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **7** of **27**

clear that head increases continuously as the capacity is decreased. The head corresponding to zero or no discharge is known as the shut off head of the pump. From H-Q curve, it is possible to determine whether the pump will handle the necessary quantity of liquid against a desired head or not and the effect of increase or decrease of head. The η -Q curve shows the relationship between pump efficiency and capacity. It is clear from η -Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The P _B - Q curve gives us an idea regarding the size of motor required to operate the pump at	1.5
corresponding to zero or no discharge is known as the shut off head of the pump. From H-Q curve, it is possible to determine whether the pump will handle the necessary quantity of liquid against a desired head or not and the effect of increase or decrease of head. The η -Q curve shows the relationship between pump efficiency and capacity. It is clear from η -Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The P _B - Q curve gives us an idea regarding the size of motor required to operate the pump at	1.5
pump. From H-Q curve, it is possible to determine whether the pump will handle the necessary quantity of liquid against a desired head or not and the effect of increase or decrease of head. The η -Q curve shows the relationship between pump efficiency and capacity. It is clear from η -Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The P _B - Q curve gives us an idea regarding the size of motor required to operate the pump at	1.5
handle the necessary quantity of liquid against a desired head or not and the effect of increase or decrease of head. The η -Q curve shows the relationship between pump efficiency and capacity. It is clear from η -Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The P _B - Q curve gives us an idea regarding the size of motor required to operate the pump at	
effect of increase or decrease of head. The η -Q curve shows the relationship between pump efficiency and capacity. It is clear from η -Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The P _B - Q curve gives us an idea regarding the size of motor required to operate the pump at	
between pump efficiency and capacity. It is clear from η -Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The P _B - Q curve gives us an idea regarding the size of motor required to operate the pump at	
efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The P _B - Q curve gives us an idea regarding the size of motor required to operate the pump at	
maximum in the region of the rated capacity and then falls. The P_B - Q curve gives us an idea regarding the size of motor required to operate the pump at	
gives us an idea regarding the size of motor required to operate the pump at	
the required conditions and whether or not motor will be overloaded under any	
other operating conditions.	
2 d Difference between safety valve and rupture disc:	
A safety valve is designed to open and release excess pressure. It closes again	
when overpressure ceases.	
The ultimate safety device used in pressure vessel to avoid accident is rupture	
disc. Rupture disc, is a non-reclosing pressure-relief device. A rupture disc is a	
one-time-use membrane. They can be used as single protection devices or as a	2
backup device for a conventional safety valve, if the pressure increases and	
the safety valve fails to operate (or can't relieve enough pressure fast enough)	
the rupture disc will burst. Rupture discs are very often used in combination	
with safety relief valves, isolating the valves from the process, thereby saving	
on valve maintenance and creating a leak-tight pressure relief solution.	

ect title: Flu	id Flow Operation Subject code	17426	
		Page 8 of	f 27
	Diagram of Rupture disc:	2	
2 e	For laminar flow, $f = \frac{16}{NRe}$ (Proof) Fanning's friction f is defined as the ratio of shear stress at the product of velocity energy and density(ρ) ie $f = \frac{\tau_w}{\frac{\rho V^2}{2}}$ (i) But average velocity $v = \frac{\tau_w r_w}{4\mu}$ where r_w is the radius at the way viscosity of the fluid So $\tau_w = \frac{4\mu V}{r_w}$ (ii) Substituting the value of τ_w from equation 2 in equation 1 $f = \frac{8\mu V}{\rho r_w V^2}$ $= \frac{16\mu}{\rho DV}$ where D is the diameter	e wall (τw) to the all and μ is the	
	$= \frac{16}{\frac{\rho DV}{\mu}} = \frac{16}{NRe}.$ Hence the proof.	2	
2 f	Calibration of Rota meter:	4	
	1) For calibration, allow the liquid to flow through the R	ota meter.	

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **10** of **27**

		Level of water in tank $=h_w=1.5m$	answer			
		Level of oil in tank $=h_0=0.8m$				
		By definition, $\rho_w = 1000 \text{ kg/m}^3$				
		Specific gravity= $\frac{density \ of \ oil}{density \ of \ water}$				
		$0.8 = \frac{\rho o}{\rho w}$				
	$ ho_{ m o}= m 0.8* ho_{ m w}$					
		$\rho_{\rm w}=0.8 * 1000 = 800 \text{ kg/m}^3$				
		by definition of hydrostatic equilibrium, pressure exerted by liquid column of				
		height h can be calculated as :				
		P=hpg				
		For given situation				
		$\begin{pmatrix} Pressure exerted \\ at \\ bottom of tank \end{pmatrix} = \begin{pmatrix} Pressure exerted \\ by \\ oil column \end{pmatrix} + \begin{pmatrix} Pressure exerted by \\ water column \end{pmatrix}$				
		$P = h_w \rho g + h_o \rho g$				
		P=(1.5 * 1000 * 9.81)+(2 * 800 * 9.81)				
		$P=30411\frac{N}{m^2}$				
		Gauge pressure exerted at the bottom of tank = $30411 \frac{N}{m^2}$				
3	b	Classification of valve				
		The valves are classified on different basis and criteria as follows.	2			
		a. On-Off valve e.g. Ball valve, Gate valve, Plug valve				
		b. Unidirectional valve e.g. Non return valve				
		c. Flow regulating valve e.g. Globe valve, Diaphram valve, Needle valve,				
		control valve etc.				

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **11** of **27**

		d. Special purpose valve e.g. Safety valve, Pressure regulating valve, etc.				
		Valve used for				
		(i) Accurate control of extremely smaller flow rate	1			
		Needle valve				
		(ii) Flow regulation of corrosive fluids:				
		Diaphragm valve	1			
3	c	Diagram of Double acting reciprocating pump:	Diagram 3 marks and labeling 1 mark			
		UK UK				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **13** of **27**

		multistage compressor.			
3	e	Newton's law of viscosity			
		Newton law of viscosity states that shear stress is proportional to shear rate or	Statement :		
		velocity gradient.	1 mark		
		Mathematical expression:	al		
		$\tau \propto \frac{du}{du}$	expression :		
		l d dy	2 mark		
		$ au=\murac{du}{dy}$	Units and meaning : 1		
		T=shear stress acting on fluid (N/m ²)	mark		
		du/dy=shear rate (m ⁻¹)			
		μ =constant of proportionality mentioned as coefficient of viscosity.			
3	f	Data :			
		Vapour pressure of the liquid $(P_v) = 40 \text{kN} / \text{m}^2 = 40*10^3 \text{ N} / \text{m}^2$.			
		Atmospheric pressure (P_A) = 101325 N / m ² .			
		Atmospheric pressure (P_A) = 101325 N / m ² . Distance between suction line and level of liquid in the reservoir = 1.5m			
		Density of the liquid (ρ) = 840 kg / m ³			
		$h_{fs} = 3.5 \text{ J} / \text{kg}$			
		$h_{fs}^{1} = 3.5 \text{ J} / \text{kg} = 3.5 / 9.8 = = 0.3567 \text{ m}$			
		$NPSH = \frac{P_a - P_V}{\rho g} - Z_a - h_{fs}^1$	2		
		$=\frac{101325-40000}{840*9.81} - 1.5 - 0.3567 = 20.46 \text{ J/Kg} = 5.5852 \text{m}$	1		
4 a		Attempt any FOUR of the following	16		
4	a	Difference between Pipes and Tubes	1 mark each		

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **14** of **27**

		Criteria	Tube	Pipe	
		(i) Length	Tubes are flexible	Pipes are usually	
			and available up to	rigid, straight and	
			several hundread	generally available	
			meters length.	up to length 6m.	
		(ii) Method of	Tube thickness is	Pipe thickness is	
		expressing thickness	generally expressed	function of internal	
			in Birmigham Wire	pressure and	
			Guage(BWG).	allowable stress of	
			BWG 7 represents	material. It is	
			heavy walled tube	generally expressed	
			and 24 represents	in scheduled number.	
			thin pipe.		
		(iii) MOC	Tubes are generally	Pipes are made of	
			made up of metal	metal as well as non	
			and alloys like	metal like cast iron,	
			copper, stainless	steel, PVC, etc.	
			steel, monel, etc.		
		(iv) Method of	Fitted by flaring and		
		Fitting	brazing	Fitted by weding,	
				flanged joints and	
				pipe fittings.	
4	b	Reynolds experiment			Description-
		Scientist Osborne Rey	nold"s observed the flo	w of fluid . He did did som	e 3 marks,
		fundamental experimer	nts to understand the inf	luence of various paramters of	n Diagram :

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **17** of **27**

		Application of jet ejec	tors			
		Steam jet ejectors are u	sed as vaccum generation	ng device. Depending up	on the	1 mark each
		magnitude of vaccum	for any two			
		used. Reaction under	application			
		under vacuum uses stea				
4	d	Difference between variable head meter and variable area meter:				
		Criteria	Variable head	Variable area		
			flowmeter	flowmeter		
		(i)Working principle	Flowrate is directly	Flowrate is directly		
			proportional to	proportional to area		
			differential head	available for flow.		
			across the restriction.			
		(ii) Method of	Flowmeters can be	Due to effect of		
		mounting	installed horizontal	gravity force on		
			or vertically.	measurement and		
				float position,		
				horizontal mounting		
				not possible.		
		(iii) Method of	Differential head	It gives direct value		
		estimating flow rate	across restriction is	of flow. The reading		
			measured using	on the scale		
			manometer and using	corresponding to top		
			flow equation, flow	edge of the float		
			rate is calculated.	directly gives value		
				of flow rate.		

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **18** of **27**

		(iii)Examples	Venturimeter,	Rotameter		
			orificemeter, pitot			
			tube.			
4	e	Data:				Data and
		$Q = 1 m^3 / hr = 1 / 3600$	$0 = 2.77 * 10^{-4} \text{ m}^3 / \text{ s}$			conversion :
		$D_1 = 8cm = 0.08m$				1mark
		$D_2 = 5cm = 0.05m$				Formula : 1
		A_1 = area of larger pipe	$=\pi/4 * D_1^2 = 3.14 * 0.000$	$08^2 / 4 = 5.024 * 10^{-3} \text{ m}^2$		mark
		$A_2 = area of smaller pip$	$e = \pi / 4 * D_2^2 = 3.14 *$	$0.05^2 / 4 = 1.9625 * 10^{-3}$	3 m ²	Estimation
		$V_2 =$ velocity of fluid in	n the small diameter pip	$e = Q / A_2$		of Kc : 1
			$= 2.77 * 10^{-4} / 1$	$.9625 * 10^{-3} = 0.14 \text{ m/s}$		mark
		$K_{c} = 0.4 \left(1 - \frac{A_{2}}{A_{1}}\right)$				Final
		$= 0.4 (1 - (1.9625 * 10^{-3} / 5.024 * 10^{-3}))$				answer : 1
		= 0.244				
		$h_{fc} = K_c \frac{V_{2^2}}{2g}$				
		$= 0.244 * 0.14^2 / (2*)$	9.81) = 2.435 * 10⁻⁴m			
4	f	Data:				
		Q = 12 l/minute				
		D= 1.5 cm = 0.015 m				
		$\rho = 0.9 \text{ g/cm}^3 = 0.9*10$	000 kg/m^3			
		i) Q in m^3/s				
		Q = 12 l/minute	$= 12 * 10^{-3} / 60 = 2 * 10^{-4}$	m^3/s		2
		ii) <i>ṁ</i> in g/s				
		$\dot{m} = Q * \rho = 2 * 1$	$0^{-4} *900 = 0.18 \text{ Kg} / \text{S} =$	180 g / s		2

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **19** of **27**

5		Attempt any TWO of the following	16
5	a	Data:	
		D = 75mm = 0.075m	
		Density $\rho = 1.1 \text{ g} / \text{cm}^3 = 1.1 * 1000 \text{ kg/m}^3$	
		Viscosity $\mu = 1.5$ poise = 0.15 N-S/m ²	
		Volumetric flow rate Q =3 l/ minute= $3 * 10^{-3} / 60 = 5 * 10^{-5} \text{m}^3 / \text{S}$	1
		Area A= $\frac{\pi D^2}{4} = \frac{3.14 \times 0.075^2}{4} = 4.41 \times 10^{-3} \text{m}^2$	1
		L = 50m	1
		Velocity V = $\frac{Q}{A}$ = 5 *10 ⁻⁵ / 4.41 *10 ⁻³ = 0.01134 m / s	1
		NRe = $\frac{DV\rho}{\mu}$ = 0.075 *0.01134*1.1*1000 / 0.15 = 6.237	1
		Since NRe < 2100, flow is laminar	
		f = 16 / NRe = 16 / 6.237 = 2.565	3
		$h_{fs} = 4 f l V^2 \ / \ 2D = 4 * 2.565 \ * 50^* \ 0.01134^2 \ / \ (2 * 0.075) = \textbf{0.439 J/kg}$	
		$\Delta P = hfs * \rho = 0.439 * 1.1*1000 = 483.78 Pa$	1
5	b	Hydrostatic equilibrium:	
		A fluid is said to be in hydrostatic equilibrium or hydrostatic balance when it	
		is at rest, or when the flow velocity at each point is constant over time. This	2
		occurs when external forces such as gravity are balanced by a pressure	
		gradient force.	
		Expression to calculate pressure	
		Consider a vertical column of liquid of height h1cm. Let us consider a small	
		element of fluid of height dh cm, which is at a height hcmfrom the bottom of	
		the column. A is the cross sectional area of the column in m ² .pis the density of	
		the liquid in g/cm^3 .	

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Fluid Flow Operation

Subject code

17426

Page 20 of 27

et title	e: Flu	uid Flow Operation Subject code 17	426	
			Page 21 o	of 27
		P_1 is the pressure at the base of the column where $h = 0$		
		$P_2 - P_1 + \rho g h = 0$		
		$\mathbf{P}_1 - \mathbf{P}_2 = \rho \mathbf{g} \mathbf{h}$		
		$\Delta \mathbf{P} = \rho \mathbf{g} \mathbf{h}$	3	
5	с	Data:		
		Mass flow rate (\dot{m}) = 90 kg / minute = 90/ 60 = 1.5 kg / s	2	
		Diameter of pipe= $D = 50mm = 0.05 m$		
		Diameter of throat = $D_0 = 25 \text{ mm} = 0.025 \text{ m}$		
		Density of water = ρ_{H2O} = 1000 kg /m ³		
		Density of mercury = ρ_{Hg} = 13600 kg /m ³		
		Coefficient of venturimeter = C_0 = 0. 62		
		$Q = \dot{m} / \rho = 1.5 / 1000 = 1.5*10^{-3} \text{ m}^3 / \text{ s}$		
		The flow equation of orifice meter is		
		$Q = \frac{C_o A_o \sqrt{2 * g * \Delta H}}{\sqrt{1 - \beta^4}}$	2	
		Area of orifice= $A_o = \pi/4 * D_o^2 = \pi/4 * (0.025)^2 = 0.00049 \text{ m}^2$		
		$\beta = \frac{\text{DT}}{D} = 0.025 / 0.05 = 0.5$		
		$1.5 * 10 - 3 = \frac{0.62 * 0.00049\sqrt{2 * 9.81 * \Delta H}}{\sqrt{1 - 0.5^4}}$	2	
		ΔH = Difference in levels in terms of water	2	
		= 1.16m of water		
		$\Delta H = \Delta h \frac{(\rho_{Hg} - \rho_{H2O})}{\rho_{H2O}} \text{ where } \Delta h = \text{Difference in levels in mercury manome}$	ter	
		$1.16 = \Delta h \; \frac{(13600 - 1000)}{1000}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Fluid Flow Operation Subject code 17426 Page 22 of 27 $= 1.26 \Delta h$ 2 1.16 $\Delta h = 0.092 \text{ m of Hg} = 92 \text{ mm of Hg}.$ 6 Attempt any TWO of the following 16 Bernoulli's theorem: 6 a **Assumptions made:** 1. Velocity is constant over the entire cross sectional area. 2 2. No pump work. 3. Frictional losses are negligible. (P+ DP) A Z+AZ pA ALg For steady, irrotational flow of an incompressible fluid, the sum of pressure energy, kinetic energy & potential energy at any point is constant. Let us consider an element of length ΔL of a stream tube of constant cross 1 sectional area as shown above. Let us assume that cross-sectional area of element be A & the density of the fluid be ρ . Let u & P be the velocity & pressure at the entrance & $(u + \Delta u)$, $(P + \Delta P)$ are the corresponding quantities at the exit. The forces acting on the element are 1) The force from upstream pressure = P.A (acting in the direction of flow)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **24** of **27**

		$\frac{1}{\rho}\frac{dP}{dL} + g \frac{dZ}{dL} + \frac{d\left(\frac{u^2}{2}\right)}{dL}$	
		Which can be written as	
		$\frac{dP}{\rho} + g \cdot dZ + d\left(\frac{u^2}{2}\right) = 0 \qquad \qquad Eq. III$	
		Eq.III is called as Bernoulli Equation. It is differential form of the Bernoulli	
		Equation. For incompressible fluid, density is independent of pressure &	
		hence ,the integrated form of eq.III is	2
		$\frac{P}{\rho} + gZ + \frac{u^2}{2} = constant$	
		Hence proved that low of conservation of energy is applicable for flowing	
		fluid. The Bernoulli Equation relates the pressure at a point in the fluid to its	
		position & velocity.	
6	b	Centrifugal pump:	
6	b	Centrifugal pump: Principle:	
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The	
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller,	2
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller, therefore liquid flows into the impeller from the suction pipe. The liquid is thrown	2
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller, therefore liquid flows into the impeller from the suction pipe. The liquid is thrown outward by centrifugal action along the blades. As a result of high speed of rotation,	2
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller, therefore liquid flows into the impeller from the suction pipe. The liquid is thrown outward by centrifugal action along the blades. As a result of high speed of rotation, the liquid acquires a high kinetic energy. The acquired kinetic energy is converted	2
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller, therefore liquid flows into the impeller from the suction pipe. The liquid is thrown outward by centrifugal action along the blades. As a result of high speed of rotation, the liquid acquires a high kinetic energy. The acquired kinetic energy is converted into pressure energy when it leaves the blade tips and the liquid passes into the volute	2
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller, therefore liquid flows into the impeller from the suction pipe. The liquid is thrown outward by centrifugal action along the blades. As a result of high speed of rotation, the liquid acquires a high kinetic energy. The acquired kinetic energy is converted into pressure energy when it leaves the blade tips and the liquid passes into the volute chamber and finally is discharged through the outlet at high pressure.	2
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller, therefore liquid flows into the impeller from the suction pipe. The liquid is thrown outward by centrifugal action along the blades. As a result of high speed of rotation, the liquid acquires a high kinetic energy. The acquired kinetic energy is converted into pressure energy when it leaves the blade tips and the liquid passes into the volute chamber and finally is discharged through the outlet at high pressure. Construction:	2
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller, therefore liquid flows into the impeller from the suction pipe. The liquid is thrown outward by centrifugal action along the blades. As a result of high speed of rotation, the liquid acquires a high kinetic energy. The acquired kinetic energy is converted into pressure energy when it leaves the blade tips and the liquid passes into the volute chamber and finally is discharged through the outlet at high pressure. Construction: The parts of a centrifugal pump are	2
6	b	Centrifugal pump: Principle: By centrifugal action, the liquid is lifted from a lower level to higher level. The impeller blades in revolving produce a reduction in pressure at eye of impeller, therefore liquid flows into the impeller from the suction pipe. The liquid is thrown outward by centrifugal action along the blades. As a result of high speed of rotation, the liquid acquires a high kinetic energy. The acquired kinetic energy is converted into pressure energy when it leaves the blade tips and the liquid passes into the volute chamber and finally is discharged through the outlet at high pressure. Construction: The parts of a centrifugal pump are (i) Impeller: It is the heart of a centrifugal pump. It is mounted on a shaft. The	2

SUMMER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

17426

Page **26** of **27**

		Working: First priming of pump is done. Then delivery valve is kept closed and power	
		from electric motor is applied to shaft. The delivery valve is kept closed in	
		order to reduce the starting torque for the motor. Impeller rotating in the	
		casing produces a forced vortex which imparts a centrifugal head to the liquid	
		and pressure is increased throughout the liquid. As long as delivery valve is	
		closed and impeller is rotated, there will be just churning of the liquid within	
		the casing. When delivery valve is opened, liquid is flown in outward radial	
		direction, leaving the vanes of impeller at outer circumference with high	
		velocity and pressure. Vacuum is created at the eye of impeller, therefore	2
		liquid from sump flows through suction pipe to eye of impeller thereby	
		replacing the liquid which is being discharged from the entire circumference	
		of the impeller. The high pressure is utilized in lifting of the liquid to required	
		height through delivery pipe.	
6	c	Application of	
		(i) Centrifugal compressor	1.5 marks
		1) Oil refineries	for any two
		2) To provide oil free compressed air in food processing	application
		3) Refrigeration and air conditioning	
		4) Gas turbines	
		(ii) Centrifugal blower	1.5 marks
		1)Sewage aeration	for any two
		2) Furnaces like Blast, Cupola etc.	application
		3)Municipal gas plant	
		4) Hot air blowers	
		(iii) Reciprocating compressor	

Subject title: Fluid Flow Operation	Subject code	17426	õ
			Page 27 of 2
1)Refrigeration plants			1.5 marks
2) Gas pipelines			for any two
3)Compressed air for automot	biles		application
4)Manufacturing of LDPE(Lo	ow Density Polyethelene)		
(iv) Fan			
1)To remove flue gases from	n boiler to the atmosphere		1.5 marks
2)To draw air through the co	ooling tower		
Justification for size of impe	eller required in the case of centri	ifugal blower	
is large:			
Centrifugal Blowers require	large diameter impellers and h	nigh speed of	2
operations since very high h	heads in terms of low density flui	id (eg. gas or	
vapour)are needed for generat	ting moderate pressure ratios.		