SUMMER- 19 EXAMINATION

Subject Name: Theory of Structures
Model Answer
Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Sub } \\ \text { Q. N. } \end{array}$	Answer	Marking Scheme
Q. 1	(A)	Attempt any SIX.	(12)
Q. 1	A)a) Ans	Explain the condition for no tension or zero stress at extreme fiber. For no tension, magnitude of direct stress must be greater than or equal to the magnitude of bending stress.	02 M
Q. 1	A)b) Ans	State the middle third rule. Middle third rule: In case of rectangular cross section, if the load is applied at location along the middle third part of both mutually perpendicular axes then the stresses produced are wholly of compressive nature.	01 M 01 M
Q. 1	$\begin{array}{\|l\|} \hline \text { A)c) } \\ \text { Ans } \end{array}$	State the relation between slope and deflection. Deflection equation is the integration of slope equation. J(Slope) = Deflection	02 M
Q. 1	A)d) Ans	State the value of maximum slope and deflection at free end of a cantilever that carries point load at free end. Maximum slope at free end $=\left(\Theta_{\text {max }}\right)=\mathrm{WL}^{2} / 2 \mathrm{EI}$ Maximum deflection at free end $=\left(y_{\text {max }}\right)=\mathrm{WL}^{3} / 3 E I$ Where W= Point load $\mathrm{L}=$ length (span) of beam (m) $\mathrm{E}=$ modulus of elasticity $\left(\mathrm{KN} / \mathrm{m}^{2}\right)$ $\mathrm{I}=$ moment of inertia of a beam m^{4}	01 M 01 M
Q. 1	A)e)	State advantages Of fixed beam.	

	Ans	Advantages of fixed beam over simply supported beam: (1) Due to end fixity, end slope of a fixed beam is zero. (2)A fixed beam is stronger, stiffer and stable. (3) For same span and loading, fixed beam has lesser value of Bending moment. (4) Smaller moment permits smaller sections and there is saving in beam material. (5) Fixed beam has lesser deflection for same span and loading as compared to S.S. beam	Any Two 01 M for each
Q. 1	A)f) Ans	Define carry over factor. Carry over factor:- it is the ratio of moment produce at a joint to the moment applied at the other joint without displacing it.	02 M
Q. 1	A)g) Ans	Define distribution factor. Distribution factor: - it is the ratio of relative stiffness of a member to the total stiffness of all the members meeting at a joint.	02 M
Q. 1	A)h) Ans	Difference between any two points between Perfect and Imperfect frame.	Any two 01 M for each
Q. 1	$\begin{aligned} & \text { A) i) } \\ & \text { Ans } \end{aligned}$	Define Redundant frame. Redundant frame: If the number of members in frame is greater than two times number of members minus 3 [i.e. ($n>2 j-3$)] then the corresponding frame is called as redundant frame.	02 M
Q. 1	(B)	Attempt any TWO.	(08)
Q. 1	B)a) Ans	Calculate limit of eccentricity for rectangular section having width 'b' and depth 'd' and show it on sketch. Area $A=b x d$ $\begin{aligned} Z_{x x}=b d^{2} / 6 \quad Z_{y y} & =d b^{2} / 6 \\ \text { Direct stress }=6_{d} & =P / A \\ & =P / b d \\ \text { Bending stress } 6 b x & =M_{x x} / Z_{x x} \\ & =P \times e_{x} /\left(b d^{2} / 6\right) \\ & =6 \times P \times e_{x} / b d^{2} \end{aligned}$ Bending stress $6_{b y}=M_{y y} / Z_{y y}$ $\begin{aligned} & =P \times e_{y} /\left(\mathrm{db}^{2} / 6\right) \\ & =6 \times P \times e_{x} / \mathrm{db}^{2} \end{aligned}$ For no tension,	01 M 02 M

			01 M
Q. 1	B)b) Ans	Write step by step procedure for determination of minimum and maximum stresses developed at the base of section. 1. Calculate area of section ' A ' 2. Calculate Moment of Inertia of section about respective axis.(I) 3. Calculate bending moment about respective axis. ($\mathrm{P} \times \mathrm{e}$) 4. Calculate direct stress $=P / A$ 5. Calculate Bending stress $=\mathrm{Mxy} / \mathrm{I}$ 6. Calculate maximum stress $=$ Direct stress + Bending stress 7. Calculate minimum stress $=$ Direct stress - Bending stress.	04 M
Q. 1	B)c) Ans	A solid circular column of diameter $\mathbf{2 5 0} \mathbf{~ m m}$ carries an axial load 'W' kN and a load of 200 kN at an eccentricity of $\mathbf{1 5 0} \mathbf{~ m m}$. Calculate minimum value of ' W ' so as to avoid the tensile stresses at base. Axial load $=W$, eccentric load $P=200 \mathrm{kN}$., eccentricity e $=150 \mathrm{~mm}$. Area $A=\pi D^{2} / 4$ $\begin{aligned} & =\pi \times 250^{2} / 4 \\ & =49087.39 \mathrm{~mm}^{2} . \end{aligned}$ $\begin{aligned} \text { Moment of Inertia I } & =\pi D^{4} / 64 \\ & =\pi 250^{4} / 64 \\ & =191747598.5 \mathrm{~mm}^{4} \end{aligned}$ $\mathrm{Z}=\mathrm{I} / \mathrm{y}_{\max }$ $=191747598.5 / 125=1533980.79 \mathrm{~mm}^{3}$ $M=P \times e=200 \times 10^{3} \times 150=3 \times 10^{7} \mathrm{~N}-\mathrm{mm}$ $\begin{aligned} \text { Direct stress }=6_{d} & =(W / A)+(P / A) \\ & =(W / 49087.39)+(200 \times 103 / 49087.39) \\ & =2.0372 \times 10^{-5} \mathrm{~W}+4.074 \end{aligned}$ Bending stress $6_{b}=M / Z$ $\begin{aligned} & =3 \times 10^{7} / 1533980.79 \\ & =19.56 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ For no tension, $6_{d}=6$ b $\begin{aligned} & 2.0372 \times 10^{-5} \mathrm{~W}+4.074=19.56 \\ & \mathbf{W}=760161 \mathrm{~N} . \end{aligned}$	01 M
Q. 2		Attempt any FOUR.	(16)
Q. 2	a)	State the slope and deflection at the ends of simply supported beam of span 'L' carrying a udl of w/unit length over entire span. Slope at ends $=w L^{3} / 24 E I$ Deflection at ends $=0$	$\begin{aligned} & \text { 02M } \\ & 02 \mathrm{M} \end{aligned}$

		Where, E is Modulus of elasticity and I is moment of inertia of the c / s of beam.	
Q. 2		Write the equation for slope and deflection at free end for a cantilever beam having u.d.l. over entire span and meaning of terms used in it. Slope at free end $=(\theta)=w L^{3} / 6 \mathrm{El}$ Deflection at free end $=(y)=w L^{4} / 8 \mathrm{El}$ Where $\mathrm{w}=\mathrm{u} . \mathrm{d} . \mathrm{l} .$ $\mathrm{L}=$ length (span) of beam (m) $\mathrm{E}=$ modulus of elasticity $\left(\mathrm{KN} / \mathrm{m}^{2}\right)$ $\mathrm{I}=$ moment of inertia of a beam m^{4}	02 M 02 M
Q. 2		Explain step by step procedure of Macaulay's method for finding slope and deflection equation. 1. Calculate reactions of beam. 2. Consider any one of the ends of beam as origin and take a section $x-x$ in the last part of the beam from origin. 3. Formulate bending moment equation for section $x-x$. (It contains macaulay's terms in the form of ($x-a$), ($x-b$)....etc. 4. Equating bending moment with (-)EId ${ }^{2} y / d x^{2}$ 5. Integrating this equation for getting slope equation. 6. Further integrating equation for getting deflection equation. Note: Above both equations contain C1 and C2 (Integration constant) 7. Applying end conditions, calculate values of C 1 and C 2 . 8. Putting the values of C 1 and C 2 in respective equations, get equations for slope and deflection. 9. Put the value of x (distance of section from origin where slope or deflection is required) in respective equation and calculate the value of slope or deflection.	04 M
Q. 2	d) Ans	Find the maximum deflection for a simply supported beam of 6 m span carrying a point load of 20 kN at 2 m from left support as shown in fig. Take $E=2 \times 10^{6} \mathrm{~N} / \mathrm{mm}^{2}, I=2 \times 10^{7}$ mm^{4}. Reactions: $\begin{aligned} \Sigma M_{A} & =0 \\ 20 & \times 2-R_{B} \times 6=0 \\ R_{B} & =40 / 6 \\ & =6.67 \mathrm{kN} . \\ R_{A} & =20-6.67=13.33 \mathrm{kN} . \end{aligned}$	01 M

		Eldy/dx $=-13.33 \mathrm{xX}^{2} / 2+20 \mathrm{x}(\mathrm{X}-2)^{2} / 2+\mathrm{C}_{1}$ Integrating $\begin{aligned} & \text { Ely }=-13.33 \times \text { X }^{3} / 6+20 \times(X-2)^{3} / 6+C_{1} \times X \\ & +C_{2} \end{aligned}$ At $X=0 ; y=0$ in Ely eq ${ }^{n}$. $\begin{aligned} & 0=0+C_{2} \\ & C_{2}=0 \end{aligned}$ At $X=6 ; y=0$ in Ely eq ${ }^{\text {n }}$. $\begin{aligned} & 0=-13.33 \times 6^{3} / 6+20 \times(6-2)^{3} / 6+C_{1} \times 6+0 \\ & C_{1}=44.42 \end{aligned}$ Hence $\mathrm{C}_{1}=44.42$ and $\mathrm{C}_{2}=0$ Slope equation- $\mathrm{dy} / \mathrm{dx}=(1 / \mathrm{EI})\left[-13.33 \times \mathrm{X}^{2} / 2+20 \times(\mathrm{X}-2)^{2} / 2+\right.$ 44.42] -----(01) Deflection equation- $y=(1 / E I)\left[-13.33 \times X^{3} / 6+20 \times(X-2)^{3} / 6+\right.$ $\begin{equation*} 44.42 \times \mathrm{X}] \tag{02} \end{equation*}$ For maximum deflection, slope shall be zero.	Eldy/dx $=-6.67 \mathrm{x} \mathrm{X}^{2} / 2+20 \times(\mathrm{X}-4)^{2} / 2+\mathrm{C}_{1}$ Integrating Ely $=-6.67 \times \mathrm{X}^{3} / 6+20 \times(X-4)^{3} / 6+C_{1} \times X+$ C_{2} At $X=0 ; y=0$ in Ely $e q^{n}$. $\begin{aligned} & 0=0+C_{2} \\ & C_{2}=0 \end{aligned}$ At $X=6 ; y=0$ in Ely eq ${ }^{\text {n }}$. $\begin{aligned} & 0=-6.67 \times 6^{3} / 6+20 \times(6-4)^{3} / 6+C_{1} \times 6+0 \\ & C_{1}=35.56 \end{aligned}$ Hence $\mathrm{C}_{1}=35.56$ and $\mathrm{C}_{2}=0$ Slope equation- $d y / d x=(1 / E I)\left[-6.67 x^{2} / 2+20 \times(X-4)^{2} / 2+\right.$ 35.56] -----(01) Deflection equation- $\begin{align*} & y=(1 / E 1)\left[-6.67 \times X^{3} / 6+20 \times(X-4)^{3} / 6+\right. \\ & 35.56 \times X]----(02) \tag{02} \end{align*}$ For maximum deflection, slope shall be zero. $0=-6.67 \times X^{2} / 2+0+35.56$ Hence $X=3.27 \mathrm{~m}$. from B. Put $X=3.27$ in eq. 02 $y_{\text {max }}=(1 / E I)\left[-6.67 \times 2.73^{3} / 6+0+35.56 x\right.$ 3.27] $=77.37 / E 1$. $\begin{aligned} & \mathrm{EI}=2 \times 10^{6} \times 2 \times 10^{7}=4 \times 10^{13} \mathrm{~N}-\mathrm{mm}^{2} \\ &=4 \times 10^{13} \times 10^{-9} \mathrm{kN}-\mathrm{m}^{2} \\ &=4 \times 10^{4} \mathrm{kN}-\mathrm{m}^{2} \end{aligned} \quad \begin{aligned} \mathrm{Ymax}=77.37 / 4 \times 10^{4} & =1.93 \times 10^{-3} \mathrm{~m} . \\ & =1.93 \mathrm{~mm} . \end{aligned}$	$02 \text { M }$ $01 \text { M }$
Q. 2	e) Ans	Explain principle of superposition with respect In this, first fixed beam is split in to two simply other has end moments. Then both the beams solutions are combined together for getting th	to fixed beam. supported beams. One having loading and are analyzes independently. After that the e solution of fixed beam.	04 M
Q. 2	f) Ans	A fixed beam of span 6 m carries an udl moment from first principle and draw B.M.D. SSBM $=15 \times 6^{2} / 8=67.5 \mathrm{kN}-\mathrm{m}$. Area of SSBMD $=\mathrm{a}_{1}=2 \times 6 \times 67.5 / 3=270$ Due to symmetry, $M_{A}=M_{B}$ Area of FEMD $=a_{2}=M_{A} \times 6=6 M_{A}$ Condition 1, Area of SSBMD = area of FEMD. $\begin{aligned} & 270=6 M_{A} \\ & M A=270 / 6=45 \mathrm{kN}-\mathrm{m} . \end{aligned}$ And MB $=45 \mathrm{kN}-\mathrm{m}$. Net B.M at mid-span $=67.5-45=22.5 \mathrm{kN}-\mathrm{m}$.	f $15 \mathrm{kN} / \mathrm{m}$ over entire span. Find fixed end	02 M for calculati ons. 02 M for dia.

\begin{tabular}{|c|c|c|c|}
\hline Q. 3 \& \& Attempt any FOUR. \& (16) \\
\hline Q. 3 \& a) \(\begin{aligned} \& \text { Ans }\end{aligned}\) \& \begin{tabular}{l}
A rectangular column is 200 mm wide and 100 mm thick. It carries a load of 180 kN at an eccentricity of 100 mm in the plane bisecting thickness. Find the maximum and minimum intensities of stress in section.
\[
\begin{aligned}
\& A=200 \times 100=2 \times 10^{4} \mathrm{~mm}^{2} \\
\& \mathrm{I}_{\mathrm{yy}}=100 \times 200^{3} / 12=6.67 \times 10^{7} \mathrm{~mm}^{4} \\
\& Z_{x x}=6.67 \times 10^{7} / 100=6.67 \times 10^{5} \mathrm{~mm}^{3} \\
\& M=P \times e=180 \times 10^{3} \times 100=18 \times 10^{6} \mathrm{~N}-\mathrm{mm} .
\end{aligned}
\]
\[
\begin{aligned}
\text { Direct stress }=6_{d} \& =P / \mathrm{A} \\
\& =180 \times 10^{3} / 2 \times 10^{4} \\
\& =9 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\] \\
Bending stress \(6_{b}=M / Z\)
\[
=18 \times 10^{6} / 6.67 \times 10^{5}
\]
\[
=27 \mathrm{~N} / \mathrm{mm}^{2}
\]
\[
\begin{aligned}
\text { Maximum stress } \& =6_{\mathrm{d}}+6_{\mathrm{b}} \\
\& =9+27=36 \mathrm{~N} / \mathrm{mm}^{2} \text { (Comp.) }
\end{aligned}
\]
\[
\begin{aligned}
\text { Minimum stress } \& =6_{d}-6_{b} \\
\& =9-27=(-) 18 \mathrm{~N} / \mathrm{mm}^{2} \text { i.e. } 18 \mathrm{~N} / \mathrm{mm}^{2} \text { (tensile) }
\end{aligned}
\]
\end{tabular} \& 01 M

01 M
01 M

01 M

\hline Q. 3 \& b) \& Determine distribution factor at continuity for a continuous beam ABCD which is fixed at A and simply supported at B, C and D. Take $A B=6 \mathrm{~m}, B C=3 \mathrm{~m}$ and $C D=2 \mathrm{~m}$. If M.I. for span is $I_{A B}=3 I, I_{B C}=2 I$ and $I_{C D}=1 I$. \& | 01 M |
| :--- |
| 01 M |
| 01 M |
| 01 M |

\hline Q. 3 \& | c) |
| :--- |
| Ans | \& | A propped cantilever AB of span 4.2 m is fixed at A and propped at B, carrying UDL of 20 kN/m. Using clapeyron's theorem, calculate support moment and draw BMD. |
| :--- |
| Consider zero span at A. $\begin{aligned} & \text { S.S.B.M. }=20 \times 4.2^{2} / 8=44.1 \mathrm{kN}-\mathrm{m} . \\ & \mathrm{a}_{1}=2 \times 44.1 \times 4.2 / 3=123.48 \\ & \mathrm{x}_{1}=2.1 \mathrm{~m} . \\ & \mathrm{M}_{\mathrm{B}}=0 \text { (End simple support) } \end{aligned}$ | \& 01 M

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Q. 3 \& f) Ans \& \begin{tabular}{l}
State Clapeyron's theorem of three moments and give meaning of each terms involved. For a two span continuous beam having uniform moment of inertia, supported at ends A, B and \(C\) subjected to any external loading, the support moments \(M A, M B\) and \(M C\) at the supports \(A, B\) and \(C\) respectively are given by the relation
\[
M_{A} L_{1}+2 M_{B}\left(L_{1}+L_{2}\right)+M_{C} L_{2}=-\left(6 a_{1} x_{1} / L_{1}+6 a_{2} x_{2} / L_{2}\right)
\] \\
Where \\
\(L_{1}=\) length of span \(A B\) \\
\(L_{2}=\) length of span \(B C\) \\
\(a_{1}=\) area of free BMD for the span AB \\
\(a_{2}=\) area of free BMD for the span BC \\
\(x_{1}=\) distance of C.G. of free BMD over the span \(A B\) from Left end \(A\) \\
\(x_{2}=\) distance of C.G. of free BMD over the span BC from right end \(C\)
\end{tabular} \& 02M \\
\hline Q. 4 \& \& Attempt any TWO. \& (16) \\
\hline Q. 4 \& a) \& \begin{tabular}{l}
A circular chimney has external diameter 60\% more than internal diameter. The height of chimney is 30 m and is subjected to a horizontal wind pressure of \(1.70 \mathrm{kN} / \mathrm{m}^{2}\). Find out the diameter of chimney so as to avoid tension at the base of chimney and also draw stress distribution diagram. Unit weight of chimney material is \(19 \mathrm{kN} / \mathrm{m}^{3}\) and \(C=0.60\).
\[
\mathrm{h}=30 \mathrm{~m}, \mathrm{p}=1.7 \mathrm{kN} / \mathrm{m} 2, \mathrm{D}=1.6 \mathrm{~d} \quad \mathrm{OR} \mathrm{~d}=0.625 \mathrm{D}, \mathrm{Y}=19 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{C}=0.6
\] \\
Direct stress \(=6_{d}=Y h=19 \times 30=570 \mathrm{kN} / \mathrm{m}^{2}\)
\[
\begin{aligned}
M \& =C \times p \times D \times h^{2} / 2 \\
\& =0.6 \times 1.7 \times D \times 30^{2} / 2=459 D
\end{aligned}
\] \\
Moment of Inertia \(I=\pi\left(D^{4}-d^{4}\right) / 64\)
\[
\begin{aligned}
\& =\pi\left[D^{4}-(0.625 D)^{4}\right] / 64 \\
\& =0.0416 D^{4} \mathrm{~mm}^{4}
\end{aligned}
\]
\[
\text { Bending stress } \begin{aligned}
6_{b} \& =(M \times D) / 2 \times I \\
\& =(459 D \times D) / 2 \times 0.0416 D^{4} \\
\& =5516.83 / D^{2}
\end{aligned}
\] \\
For no tension, \(6_{d}=6 b\)
\[
\begin{aligned}
\& \text { And } d=0.625 \mathrm{D}=0.625 \times 3.111=1.944 \mathrm{~m} . \\
\& 6_{\max }=2 \times 6_{d}=2 \times 570=1140 \mathrm{kN} / \mathrm{m}^{2} \text { (Comp.) } \\
\& 6_{\min }=0
\end{aligned}
\]
\end{tabular} \& 01 M
01 M
01 M
01 M

02 M
02 M for
stress
dia

\hline Q. 4 \& b)

Ans \& | A fixed beam 5 m long carries a load of 60 kN at 2 m from left end. Calculate the fixed end moments, net B. M. under the load and end reactions. $\begin{aligned} \mathrm{M}_{\mathrm{AB}} & =\mathrm{Wab} \mathrm{~b}^{2} / \mathrm{I}^{2}=60 \times 2 \times 3^{2} / 5^{2} \\ & =43.2 \mathrm{kN}-\mathrm{m} . \\ \mathrm{M}_{\mathrm{BA}} & =W \mathrm{a}^{2} \mathrm{~b} / \mathrm{I}^{2}=60 \times 2^{2} \times 3 / 5^{2} \\ & =28.8 \mathrm{kN}-\mathrm{m} . \end{aligned}$ |
| :--- |
| Calculation of reactions. $\Sigma M_{A}=0=60 \times 2+28.8-43.2-R_{B} \times 5$ | \& 02 M

02 M

\hline
\end{tabular}

		$\begin{aligned} & R_{B}=21.12 \mathrm{kN} . \\ & R_{A}=60-21.12=38.88 \mathrm{kN} . \\ & \text { B. } \mathrm{M} . \text { under point load }=21.12 \times 3-28.8 \\ &=34.56 \mathrm{kN}-\mathrm{m} . \end{aligned}$	02 M 02 M
Q. 4	c)	A C.I. hollow circular column section has external diameter 250 mm and internal diameter 200 mm . It is subjected to a vertical load of 25 kN at a distance of 350 mm from the vertical axis of column. Calculate the maximum and minimum stresses at the base of the column and draw stress diagram. $\begin{aligned} & \mathrm{P}=25 \mathrm{kN}, \mathrm{e}=350 \mathrm{~mm} . \\ & \text { Area } \mathrm{A}=\pi\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right) / 4 \\ & =\pi \times\left(250^{2}-200^{2}\right) / 4 \\ & \\ & =17671.46 \mathrm{~mm}^{2} . \end{aligned}$ $\begin{aligned} & \text { Moment of Inertia } I=\pi\left(D^{4}-d^{4}\right) / 64 \\ &=\pi\left(250^{4}-200^{4}\right) / 64 \\ &=113267782.1 \mathrm{~mm}^{4} \\ & Z=I / Y_{\max } \\ &= 113267782.1 / 125=906142.26 \mathrm{~mm}^{3} \\ & M=P \times e=25 \times 10^{3} \times 350=875 \times 10^{4} \mathrm{~N}-\mathrm{mm} . \end{aligned}$ Direct stress $=6_{d}=P / A$ $\begin{aligned} & =25 \times 10^{3} / 17671.46 \\ & =1.415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Bending stress $6_{b}=M / Z$ $=875 \times 10^{4} / 906142.26$ $=9.656 \mathrm{~N} / \mathrm{mm}^{2}$ $\begin{aligned} \text { Maximum stress } & =6_{d}+6_{b} \\ & =1.415+9.656=11.071 \mathrm{~N} / \mathrm{mm}^{2} \text { (Comp.) } \\ \text { Minimum stress } & =6_{d}-6_{b} \\ & =1.415-9.656=(-) 8.241 \mathrm{~N} / \mathrm{mm}^{2} \text { i.e. } 8.241 \mathrm{~N} / \mathrm{mm}^{2} \text { (tensile) } \end{aligned}$	01 M 02 M
Q. 5		Attempt any TWO.	(16)
Q. 5	a) ${ }^{\text {ans }}$	A continuous beam $A B C$ is simply supported at A, B and C such that $A B=B C=2 \mathrm{~m}$. Span $A B$ carries a u.d.l. of $50 \mathrm{kN} / \mathrm{m}$. from A to B, span $B C$ carries a point load of 40 kN at 0.5 m from C. Draw bending moment diagram and calculate support reactions. Use Clapyeron's theorem of moment.	

		$\begin{aligned} & \begin{aligned} \text { S.S.B.M. for } A B=50 \times 2^{2} / 8 & =25 \mathrm{kN}-\mathrm{m} . \\ \text { S.S.B.M. under load } 40 \mathrm{kN} & =40 \times 1.5 \times 0.5 / 4 \\ & =15 \mathrm{kN}-\mathrm{m} . \end{aligned} \\ & \\ & \begin{aligned} & \mathrm{a}_{1}=2 \times 225 / 3=33.33 x_{1}=1 \mathrm{~m} \\ & \mathrm{a}_{2}=0.5 \times 2 \times 15=15.0 \quad x_{2}=(2+0.5) / 3=0.833 \\ & M_{A}=M_{B}=0(\text { End simple supports }) \end{aligned} \\ & \text { Applying Clapeyron's theorem for span } A B \text { and } B C \\ & M_{A} L_{1}+2 M_{B}\left(L_{1}+L_{2}\right)+M_{C} L_{2}=-6\left(a_{1} x_{1} / L_{1}+a_{2} x_{2} / L_{2}\right) \\ & 0+2 M_{B}(2+2)+0=-6[(33.33 \times 1 / 2)+(15 \times 0.833 / 2)] \\ & 8 M_{B}=(-) 137.5 \\ & M_{B}=(-) 17.1875 \mathrm{kN}-\mathrm{m} . \end{aligned}$ Calculation of reactions. $\Sigma \mathrm{M}_{\mathrm{B}}=0$ (Consider left side) $R_{A} \times 2-50 \times 2 \times 1+17.1875=0$ $\mathrm{R}_{\mathrm{A}}=41.41 \mathrm{kN}$. $\Sigma \mathrm{M}_{\mathrm{B}}=0$ (Consider right side) $-R_{c} \times 2+40 \times 1.5-17.1875=0$ $R_{c}=21.41 \mathrm{kN}$. $R B=50 \times 2+40-41.41-21.41=77.18 \mathrm{kN}$.	01 M 01 M 02 M 02 M 02 M
Q. 5	b)	A propped cantilever of span 6 m carries a u.d.I. of $10 \mathrm{kN} / \mathrm{m}$ over the entire span. Prop is free end. Calculate the fixed end moments using Clapyeron's theorem of three moments. Also draw SFD and BMD. Consider zero span at A. $\begin{aligned} & \text { S.S.B.M. }=10 \times 6^{2} / 8=45 \mathrm{kN}-\mathrm{m} . \\ & \mathrm{a}_{1}=2 \times 45 \times 6 / 3=180 \\ & \mathrm{x}_{1}=3 \mathrm{~m} . \\ & \mathrm{M}_{\mathrm{B}}=0 \text { (End simple support) } \end{aligned}$ 37.5 kN Using three moment theorem; $M_{A 0} \times L_{0}+2 M_{A}\left(L_{0}+L_{1}\right)+M_{B} \times L_{1}=-\left[\left(6 \times a_{0} \times \times{ }_{0} / L_{0}\right)+\left(6 \times a_{1} \times \times_{1} / L_{1}\right)\right]$	02 M

(ISO/IEC - 27001-2013 Certified)

Q. 6	b) Ans	Find out the forces in the members of a cantilever truss as shown in fig. No. 3. > Joint Method Joint J1 $\Sigma \mathrm{V}=0=-20-\mathrm{Fcd} \operatorname{Sin} 30$ Fcd $=-40$ i.e. 40 kN (C) $\Sigma \mathrm{H}=0=-\mathrm{Fbd}-\mathrm{Fcd} \operatorname{Cos} 30$ Fbd $=-(-40 \operatorname{Cos} 30)$ Fbd $=34.64 \mathrm{kN}(\mathrm{T})$ Joint J2 $\Sigma \mathrm{V}=0=-25-$ Fed Fed $=-25$ i.e. 25 kN (C) $\Sigma \mathrm{H}=0=-$ Fae + Fbd Fae $=34.64 \mathrm{kN}(\mathrm{T})$ $\begin{gathered} \text { Joint J3 } \\ \Sigma \mathrm{Y}=0=\text { Fef } \operatorname{Sin} 60-\text { Fed } \operatorname{Sin} 60 \\ \text { Fef }=\text { Fed } \\ \text { Fef }=25 \mathrm{kN}(\mathrm{~T}) \\ \Sigma \mathrm{X}=0=- \text { Fcd }- \text { Fcf }- \text { Fef } \operatorname{Cos} 60-\text { Fed } \operatorname{Cos} 60 \\ =-40-\text { Fcf }-25 \operatorname{Cos} 60-25 \operatorname{Cos} 60 \\ \text { Fcf }=-65 \text { i.e. } 65 \mathrm{kN}(\mathrm{C}) \end{gathered}$ Section Method Assuming all forces tensile in nature. Section A-A $\begin{aligned} & \Sigma \mathrm{MJ1}=0=-\mathrm{Fbd} \times 2.31+20 \times 4 \\ & \mathrm{Fbd}=34.64 \mathrm{kN}(\mathrm{~T}) \\ & \begin{aligned} & \Sigma \mathrm{H}=0=-\mathrm{Fbd}-\mathrm{Fcd} \operatorname{Cos} 30 \\ & \mathrm{Fcd}=-34.64 / \cos 30 \\ &=-40 \text { i.e } 40 \mathrm{kN}(\mathrm{C}) \end{aligned} \end{aligned}$ Section B-B $\begin{aligned} & \Sigma \mathrm{MJ} 3=0=20 \times 4-\text { Fae } \times 2.31 \\ & \text { Fae }=34.64 \mathrm{kN}(\mathrm{~T}) \\ & \Sigma \mathrm{MJ5}=0=25 \times 4+20 \times 8+\text { Fcf Sin } 60 \times 4.62 \\ & \text { Fcf }=-65 \text { i.e. } 65 \mathrm{kN}(\mathrm{C}) \\ & \Sigma \mathrm{MJ} 1=0=-25 \times 4+\text { Fef Cos } 60 \times 4+\text { Fef Sin } 60 \times 2.31 \\ & \text { Fef }=25 \mathrm{kN}(\mathrm{~T}) \\ & \text { Section C-C } \\ & \Sigma \mathrm{V}=-25-\text { Fed } \\ & \text { Fed }=-25 \text { i.e. } 25 \mathrm{kN}(\mathrm{C}) \end{aligned}$	
Q. 6	c)	A truss is loaded as shown in fig. 4 Determine the nature and magnitude of truss forces in the members BE, BG and ED. Use method of joint only.	

